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Abstract

Wire-coil inserts are helix shaped copper wires that can be inserted into cooling channels to
enhance heat transfer performance. Having 4 times efficiency of open passage, and advantage
of low cost as well as little concern of clogging, wire-coil inserts are currently used in Advanced
Photon Source frontend and beamline. Previous experiments [2] have found that heat transfer
performance of wire-coil insert depends on pitch length and wire diameter. There exists an
optimal geometry that requires least water flow rate to reach a certain heat transfer coefficient.
However, the physical mechanism for this effect remains unclear, which makes it difficult to
generalize the results. In this project, our goal is to build a mathematical model of the wire-coil
insert system, simulate the heat transfer performance and validate with theory and experimen-
tal data. We consider a 3D conjugate heat transfer problem involving pipe, wire-coil, and fluid
with turbulent velocity field. We use Nek5000 fluid dynamics solver that solves for Navier-
Stokes equation with periodic boundary condition, and non-dimensional convection-diffusion
equation with prescribed heat flux. Our model has reached satisfactory agreement with both
Dittus- Boelter correlation and experimental data. It can be further used to understand the
physical mechanism of this heat transfer enhancement and help generalization the results.

1 Introduction

Many high-heat load components in Advanced Photon Source(APS) utilize forced convection
heat transfer in order to reduce the temperature on beam interacting surfaces. The wire-coil
inserts are routinely used in APS front end and beamline and high-heat-load components to
significantly enhance convection heat transfer, up to 400% compared to open passages [1].

Wire-coil inserts are usually made of thermally conducting materials, such as copper, and
have a spring-like geometry as shown in Fig. 1. The geometry of the inserts can be described by
three parameters: the wire diameter (e), the cooling passage diameter (D), and the wire-coil
pitch (p).

Previous experiments [2] tested the heat transfer performance and pressure loss of wire coil
inserts in cooling pipes over a range of geometric parameters. The results showed that wire-coil
inserts can enhance the heat transfer performance at reasonably low flow rates. The wire-coil
inserts showed reduced pressure losses compared to previously utilized wire-mesh inserts while
reducing concerns for water clogging and water quality issues. The results also showed that
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Figure 1: Example of wire coil inert[1]

pitch length can be optimized in order to lower the flow rate required for a desired heat transfer
coefficient(as shown in Fig. 2). However, the physical mechanisms behind these results are still
unclear, making it difficult to generalize the results to pipes with arbitrary size and thermal
properties.

Figure 2: Experimental result for flow rate needed to reach a fixed heat transfer performance in
relation to pitch length [2]

In this project, our goal is to develop a computational simulation for the heat transfer
performance of wire-coil inserts and validate the model with the existing experimental data.
This project will give indications for the design of coil-insert cooling systems in APS as well

2



as the generalization of this heat transfer enhancement in other applications.

In the mathematical model, we consider a 3D problem where a copper wire-coil insert
with uniform thermal properties is inserted into a cylindrical pipe of the same material. The
cooling fluid is water, as is used in APS cooling systems, and is modeled as an incompressible,
Newtonian fluid. The flow is assumed turbulent as this is a requirement in APS cooling
systems. We assume perfect thermal contact at all contact points in the system. This includes
contact between the pipe wall and fluid, the pipe wall and wire-coil insert, and the coil insert
and water. Finally, we assume a uniform prescribed heat flux at outer pipe wall.

Two different internal contact cases are considered: one being the wire-coil having a finite
contact with the pipe wall, the other being the wire-coil insert isolated from the pipe wall by
a thin gap. The solution of wire-coil having a point contact with the pipe should be bounded
by the two solutions. Since in APS applications, the wire-coils are not soldered onto the pipes,
but only mechanically inserted. Thus we think the second case is closer to reality.

2 Nondimensionalization

To set up the coordinate system for this problem, we let the end circular cross section be on
the x-y plane, and axial direction be z-direction.

To model system of fluid, pipe, and wire-coil insert, we consider incompressible Navier-
Stokes equations, which solves for the velocity field; and convection-diffusion equation, which
solves for temperature field

The convection-diffusion equation is

(ρcp)j(
dT̃

dt
+ ũ∇T̃ ) = kj∇2T̃ + Q̃j (1)

where j = f (fluid) or s (solid). T̃ is temperature, ũ is the fluid velocity, ρ is density, cp is
the specific heat, k is the thermal conductivity, and Q̃ is prescribed heat flux on system.

We nondimensionalize fluid part of (1) by firstly scaling length over the diameter of pipe
(D), where the nondimensional lengths are:

x =
x̃

D
, y =

ỹ

D
, and z =

z̃

D
.

Then we define nondimensional time: t = t̃ · U/D; nondimensional heat flux: Q =
Q̃D/(Uρf · cpf ); and nondimensional velocity: u = ũ/U , where U is the average velocity
of fluid on axial direction.

Using these nondimensional variables, equation for fluid part of (1) can be expressed in the
nondimensional form:

∂T

∂t
= −u ·∇T +

1

Pe
∇2T +Qf , (2)

where Pe = αf/(U · D) is the Peclet number, αf = kf/(ρf · cpf ) is thermal diffusivity of
fluid .

With the same scaling, the nondimensional convection-diffusion equation for the solid part
is

αf

αs

dT

dt
=

1

Pe
∇2T +Qs . (3)
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3 Numerical Method

In order to solve the incompressible Navier-Stokes equations coupled with nondimensional
convection-diffusion equation (2), (3), we use an open source 3D fluid dynamics solver, Nek5000,
which considers both of the equations.

We generate the turbulent initial condition of fluid profile by applying periodic boundary
conditions, that is, using the profile at the exit of the pipe in the previous iteration as the
initial condition profile at the entrance of the pipe for the current iteration. Also, the effect of
the wire coil insert on the fluid velocity field is incorporated into the model as perturbation.

Before we solve the problem of wire-coil insert, we solve a few related problems, in most
of which computational solutions can be validated with analytical solutions, so that we have
confidence in our final computational model that is heavily based on these problems. In order
to reach an effective comparison, we use the Nusselt number as the comparison quantity, which
represents the heat transfer efficiency, and is computed using

Nu =
q′′

Twall − Tbulk
, (4)

where q′′ is the heat flux per unit area on the inner wall, and Twall is average wall temper-
ature and Tbulk is average fluid temperature.

3.1 2D channel flow problem

We first tested the computational result of a 2D problem with its analytical solution. We first
consider a 2D channel flow problem with laminar flow profile and prescribed heat flux on inside
pipe wall.We begin with finding the Nusselt number analytically.

We start with (2), the non-dimensional convection diffusion equation in the fluid:

∂T

∂t
+ u ·∇T =

1

Pe
∇2T,

with boundary conditions

T (x+ L, y, t) = T (x, y, t) + γL (periodicity in x),

1

Pe

∂T

∂y

∣∣∣∣
y=0

= 0 (symmetry at y=0),

1

Pe

∂T

∂y

∣∣∣∣
y=1

= q′′ (prescribed heat flux at y=1).

For our chosen non-dimensionalization, width of the channel, H = 1, and prescribed heat flux
per unit area, q′′ = 1.

The constant γ arises from the balance between the energy entering via the surface flux,
Ein = Lq′′, and net energy removed by convection

Eout =

∫
x=L

uTdy −
∫
x=0

uTdy = γHL.

Equating these fluxes we find

γ =
q′′L

UHL
= 1,
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where U = 1 is the average velocity in the channel.
To simplify numerical solution, we write T (x, t) = θ(x, t) + γx, where θ satisfies

∂θ

∂t
+ u ·∇θ =

1

Pe
∇2θ − γu (5)

subject to periodic boundary conditions in x, θ(x, y, t) = θ(x+ L, y, t).
The heat transfer coefficient, h, is defined by the relationship

q′′ = h(Tw − Tb) = h(θw − θb),

where θw is the temperature at the wall (y = 1) and θb is the bulk (mixing-cup) temperature

θb :=

∫
Ω u θ dV∫
Ω u dV

,

with u the x-component of the convecting field u. In the general case, one must consider tem-
poral and/or spatial averages of θw and θb, but the above definitions suffice for the particular
case considered here. For a fluid with conductivity k, the Nusselt number is

Nu :=
Hh

k
=

Pe

θw − θb
.

As an initial test, we take prescribed steady parallel flows of the form u = (u, v) with v = 0
and

u =
m+ 1

m
(1− ym)

for integer m. The case m = 2 is standard plane Poiseiulle flow, while m =∞ corresponds to
uniform flow, u ≡ 1. The temperature θ(y) satifies

1

Pe

d2θ

dy2
=

m+ 1

m
(1− ym) , θ′(0) = 0, θ′(1) = Pe.

Integrating twice and applying the boundary conditions yields

θ = Pe · y2

(
m+ 1

2m
− ym

m(m+ 2)

)
.

To compute Nu, we need θw and θb.

θw = Pe · θ(1) =

(
m+ 1

2m
− 1

m(m+ 2)

)
.

and

θb = Pe

∫
θ u dy∫
u dy

= Pe

∫ 1

0
θ u dy

= Pe
m+ 1

m

∫ 1

0
(1− ym) y2

(
m+ 1

2m
− ym

m(m+ 2)

)
dy

= Pe
m+ 1

m

[
m+ 1

6m
− 1

m+ 3

(
1

m(m+ 2)
+
m+ 1

2m

)
+

1

m(m+ 2)(2m+ 3)

]
.

Finally, we have

Nu =
1

θw − θb
. (6)

For m=1, 2, 3, and ∞, we find respective Nusselt numbers, Nu= 1.8750, 2.0588, 2.1892, and
3.

The Nusselt number for parabolic flow profile calculated by Nek5000 code is 2.0694698.
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3.2 Simulating 3D conjugate heat transfer with laminar flow,
and deriving Nusselt number

Since the wire-coil insert problem involves 3D conjugate heat transfer in a cylindrical pipe, we
firstly considered a 3D conjugate heat transfer problem in a plain tube with prescribed heat
flux on outer wall.

Since the Nusselt number in (4) is defined in terms of temperature and heat flux of inner
wall, and the inner wall of the wire-coil insert has a complicated geometry and is difficult to
define, we need to express Nusselt number in terms of temperature and heat flux on the outer
wall of the tube.

We start by expressing the total energy input into the system per unit time:

Q = πq′′oDoL =
2πksL(To − Ti)

ln(Do/Di)
[4], (7)

where subscript ”o” denotes parameters for the outside pipe wall, and subscript ”i” denotes
those for the inner pipe wall. Q is heat input into the system by heat flux on outer wall, L is
length of the pipe.

So we can express inner wall temperature of pa

Ti = To −
Qinln(Do/Di)

2πksL
= To − q′′o

Do ln(Do/Di)

2kp
. (8)

By definition of Nusselt number,

Nu =
Dih

kf
,

in which h is heat transfer coefficient, defined as:

h =
q′′i

Ti − Tb
=
Do

Di

q′′o
Ti − Tb

,

where Tb is bulk (mixing cup) temperature of fluid.
Then Nusselt number is

Nu =
Do · q′′o

kf (Ti − Tb)
. (9)

When we use (8) in (9) to solve for Nusselt number, since the denominator of the result will
become complicated, we work with the inverse Nusselt number:

Nu−1 =
kf

Do q′′o
(To − Tb)−

kf
2kp

ln
(Do

Di

)
. (10)

In this expression of inverse Nusselt number, we can see that the first term represents the
inverse Nusselt number as if it is defined regarding the outer wall temperature and heat flux;
and the second term severs as a correction.

Now we can also solve for the parameter of linear axial temperature dependence at steady
state, γ. By conservation of energy, the energy put into the system by the heat on pipe wall
equals to the heat brought out of the system by the fluid, which is,

πq′′oL Do = γL ρ cp

∫
V
uzdV , (11)

where uz is axial component of fluid velocity.
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Then we can solve for γ from (11):

γ =
q′′oAo

ρ cp
∫
V uzdV

, (12)

where Ao is surface area of outside pipe wall.

The analytical solution [3] for Nusselt number is

Nu = 4.36, and γ = 4.

And the simulation result produced by Nek5000 yelds Nu = 4.36, and γ = 4. Thus our simu-
lation result agrees with analysis.

And for analytic derivation of temperature profile at steady state, see Appendix A

4 Building mesh for wire-coil insert geometry

Examining the geometry of the wire coil insert, we find that all cross sections along the hor-
izontal direction are identical shapes rotated at different angles. Thus, we generate the 3D
geometry by firstly constructing the horizontal cross section of wire coil insert.

We denote the outer radius of the coil to be R, and diameter of wire to be e, and distance
from coil center to center of wire to be Rw = R− e/2.

The wire coil insert can be constructed by curving a tilted straight wire around a cylinder.

The cross section of a straight wire is the intersection of a cylinder with the horizontal
plane, which is an ellipse with minor axis as the diameter of wire, e, and major axis a, as
shown in Fig. 3.

Figure 3: Left: a tilted straight wire intersecting a horizontal plane. Right: top view of elliptical
cross section.

We can express length of the major axis, a,in terms of tilted angle, β and wire diameter, e:

a = e/ sinβ . (13)
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To find β, we focus on one pitch of wire coil insert, and if straighten the wire, we can find
the geometrical relation as shown in Fig. 4:

tanβ =
p

2πRw
. (14)

where Rw = R− e/2, is radius of wire coil at wire center, and p is pitch of coil.

Figure 4: Left: one pitch of wire coil insert. Right: lateral surface of the wire coil insert.

With (13) and (14), we solve for the major axis of wire cross section:

a =
e

p

√
p2 + 4π2R2

w .

After obtaining the dimensions of the wire cross section, we need to find a linear mapping
to map the elliptical cross section into a curved ellipse, to model the curved wire that is
constrained inside a cylinder with radius R.

The mapping should satisfy that points (R, 0) and (R − e, 0) are mapped to themselves.
For a point with coordinate (x, y), we define the following quantity:

Ω =
y

R
, and r = x .

Then coordinate after mapping, (x′, y′) is:

x′ = r cos Ω , y′ = r sin Ω .

Fig. 5 left shows the transformation and the ellipse after mapping represents the cross
section of the wire coil insert.

Then by duplicating the the curved ellipse and rotating by a certain angle for each layer,
we generate a 3D mesh for the wire coil insert shown in Fig. 5 right.

5 Results

We simulated the problem with plain tube and compared with both Dittus-Boelter correlation
and experimental data (Fig. 6). The simulation result is in satisfactory agreement with both
experimental data and Dittus-Boelter correlation.

Also, we completed two simulations for wire coil insert with wire diameter to pitch ratio,
e/p = 0.438375 (is shown in Fig. 6). The e/p ratio is calculated based on an empirical relation
[1] to be the optimal wire diameter to pitch length ratio :

e/p optimum = 0.207− 0.181(e/D) + 4.426(e/D)2 .
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Figure 5: Left: Elliptical cross section before and after mapping. With R = 0.5, e = 0.2, and
p = 0.57. Right: 3D mesh for wire wire coil insert

Figure 6: Simulation result (with thin gaps between wire-coil and pipe) compared with experimental
result and Dittus-Boelter correlation

Two snap shots of temperature solutions are shown in Fig. 7. The left picture shows tem-
perature solution early in time, and the right picture shows temperature solution later in time.
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The colors from blue to red represent nondimensionalized temperature from low to high. From
Fig. 7, we can start understanding the reason of there existing an optimal pitch. If the pitch
length is too short, there would be little vortex in between two levels of coils; if the pitch length
is too long, there would be little string effect in the tube. Thus there has to be an optimal
pitch length in between these two extremes.

Figure 7: Temperature solution of Re = 5300 (thin gaps between wire-coil insert and pipe wall).
Left: early in time, Right: later in time.

6 Discussion

To ensure stability, our numerical routine has requirements on time stepping size, such that
the Courant number, C < 1. In the numerical simulation, the plain tube cases each has 4080
elements, run with polynomial order 8 and then increased to 10. We let the case run until
steady state, which is about 105 iterations. Fig. 8 is an example of convergence for Nusselt
number over time (for Re = 20K).

In our simulation result of wire-coil insert, the although Nusselt converges when system is
close to steady state, Nusselt number still has a fluctuation of 5% after run time of more than
100 hours. An example of fluctuation for Re = 10K case is shown in Fig. 9

Also, because the numerical solver we use only applies to incompressible fluid, our simula-
tion would not apply for the cases where compressible gas is used.

Because numerical simulations cannot include a single contact point between wire-coil in-
sert cross section and the pipe, we consider two cases: one is a finite length of contact between
the wire-coil insert cross section and the pipe; the other is a thin gap between wire-coil insert
and the pipe. And we think the solution for the single point contact case should be bounded
by the two simulations. In real life application of wire-coil insert in APS, there is no soldering
between the wire-coil insert and the inner pipe wall, so there can be thermal resistance between
wire-coil insert and the pipe. Furthermore, mechanical wear can also cause gaps between wire-
coil insert and pipe wall. So we think the case that considers a thin gap between wire-coil
insert and pipe wall is closer to reality than considering a finite contact between the wire-coil
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Figure 8: Convergence curve of Nusselt number of simulation, Re = 20K

Figure 9: Nusselt number fluctuates for about 5% at Re = 10K after long run time

insert and the pipe wall.
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6.1 Future work

The next step in this project will be simulating for the wire-coil inserts with the exact param-
eters as used in experiments, and validate with experimental data.

Apart from further validation of our model, we also need to use our model to study the
physical mechanisms behind the heat transfer enhancement. The heat transfer enhancement
of wire-coil insert can be caused by two reasons: one being the increased contact area between
pipe wall and fluid, the other being the stirring effect caused by the helix geometry. Future
research can use our model to study which mechanism plays a larger role in heat transfer
enhancement. For example, if setting the thermal property of wire-coil insert to be insulating,
we can focus on solely the string effect of the helix geometry, and compare with our current
result to see if it is the dominate factor.

7 Conclusion

In this project, we developed a model to simulate heat transfer performance of wire-coil insert,
and the result of simulation is in good agreement with both experimental data and Dittus-
Boelter correlation. This model can be used to further study the physical mechanism on the
heat transfer enhancement of wire-coil insert, and can benefit designs of cooling channels in
general.
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A 3D conjugate heat transfer problem with laminar

flow and prescribed heat flux on outer pipe wall

In this problem, we consider a Poiseuille flow within a straight smooth cylindrical pipe with
inner radius Ri, and outer radius Ro subject to uniform prescribed heat flux q”o on the outer
pipe wall. This section finds the steady state temperature solution analytically.

We start with non-dimensional convection-diffusion equation in the fluid

∂T

∂t
= − u ·∇T +

1

Pe
∇2T (15)

with inhomogeneous Neumann condition

− 1

Pe
∇T = q′′i . (16)

Here, T denotes temperature, t is time and u = (0, 0, uz) denotes velocity of the fluid in the
pipe. The Peclet number is Pe = ūD/α, where ū is the average velocity in the pipe, D is the
pipe diameter, α is the thermal diffusivity of the fluid, and q′′i = q′′o (Ro/Ri), is heat flux on
the inner pipe wall,

In cylindrical coordinates with radial component r̂, angular component φ̂, and axial com-
ponent ẑ, the gradient operators are:

∇T = r̂
∂T

∂r
+ φ̂

1

r

∂T

∂φ
+ ẑ

∂T

∂z
; (17)

and ∇2T =
1

r

∂

∂r
(r
∂T

∂r
) +

1

r2

∂2T

∂φ2
+
∂2T

∂z2
. (18)

We consider the steady state laminar case under fully-developed flow conditions, for which

∂T

∂t
= 0 , and

∂T

∂φ
= 0 .

The fully-developed flow conditions imply uz = uz(r), which, when coupled with the Neumann
condition on temperature leads to a linear growth in temperature, which we express as

T(r,z) = θ(r) + γz, (19)

where θ is radial dependent part of temperature, and γ is a constant.
So

∂T

∂z
= γ,

∂2T

∂z2
= 0, and

∂T

∂r
=
dθ

dr
.

So terms in the right-hand side of (15)

u ·∇T = Pe · uz · γ , (20)

and ∇2T =
1

r

∂

∂r
(r
∂θ

∂r
) . (21)

Using (20) and (21) in (15), we get

Pe · uz · γ =
1

r

∂

∂r
(r
dθ

dr
) .
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Since in this problem, we consider a Poiseuille flow in a smooth cylindrical pipe, the fluid
velocity on axial direction in relation to radial position is parabolic, and in order for the
volumetric velocity to be 1, we let the velocity profile be

uz(r) = 2(1− 4r2) .

Then we have
∂

∂r
(r
∂θ

∂r
) = 2Pe · γ · r(1− 4r2) .

Integrate both sides, we get

r
dθ

dr
= Pe · γ(r2 − 2r4) +A , (22)

where A is integration constant. For r = 0, both sides of (22) should become zero, so A = 0.

Dividing both sides of (22) by r and integrate again , we get the general solution for θ:

θ(r) = Pe · γ (
r2

2
− r4

2
) + C , (23)

where C is an integration constant.

Then we can use the boundary condition of prescribed heat flux to determine γ. By
Fourier’s law of conduction, we have

k
∂T

∂r

∣∣∣
r=Ri

= q′′i = q′′o
Ro

Ri
,

where k is thermal conductivity of fluid, q′′ is heat flux per unit area on the inside pipe wall,
and R is radius of pipe.

From Eq.(23), we have
∂T

∂r
=
∂θ

∂r
= Pe · γ(r − 2r3) .

Using in boundary condition, we find

γ =
q′′oRo

kRi · Pe(Ri − 2R3
i )
.

From definition of Peclet number,

Pe =
2Ri · ū
α

=
2Ri · ρ · cp

k

where ū is volumetric flow rate of water, α = k/(ρ · cp), is diffusivity of fluid, ρ is density of
fluid and cp is specific heat of fluid. In our non-dimensional problem, q′′i = 1, ρ · cp = 1, and
Ri = 0.5, we find γ = 4. And solution for temperature is

T(r,z) =
1

2
γ (r2 − r4) + γz + C .
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