Physics exploration from the MeV to TeV scale: New results from the CMS experiment

Nadja Strobbe (University of Minnesota), on behalf of the CMS experiment

Fermilab Wine & Cheese Seminar 2023/04/07

CMS data taking in Run 2 & 3

LHC delivers collisions

CMS detects collisions

Papers are published

>1100 papers submitted using collision data

Including 1 with Run 3 data!

tt cross section at 13.6 TeV

 $\sigma_{t\bar{t}} = 882 \pm 23 (\text{stat} + \text{syst}) \pm 20 (\text{lumi}) \text{ pb}$

TOP-22-012

Measurement agrees with the Standard Model prediction of $\sigma_{t\bar{t}}^{SM} = 921^{+29}_{-37} \text{ pb}$

First CMS result at 13.6 TeV data

using 1.21 fb⁻¹ of data taken from July 28 to August 3, 2022

- Uses events with 1 or 2 electrons or muons and additional jets
- Maximum likelihood fit to event \bullet yields in 11 categories based on lepton number/type, N_i and N_b

Source	Uncertain
Lepton ID efficiencies	1.6
Trigger efficiency	0.3
JES	0.7
b tagging efficiency	1.1
Pileup reweighting	0.5
ME scale, $t\bar{t}$	0.6
ME scale, backgrounds	0.1
ME/PS matching	0.1
PS scales	0.3
PDF and $\alpha_{\rm S}$	0.3
Single t background	1.0
Z+jets background	0.3
W+jets background	0.0
Diboson background	0.5
QCD multijet background	d 0.3
Statistical uncertainty	0.5
Combined uncertainty	2.6
Integrated luminosity	2.3
-	

CMS Run 2 legacy: from MeV to TeV scale

Over 4 orders of magnitude in mass!

Note: not covering heavy ion results today

9 orders of magnitude in cross section!

not including multijet...

				CMS preliminary
	w	7 TeV	JHEP 10 (2011) 132	
eak	W	8 TeV	PRL 112 (2014) 191802	
W	W	13 TeV	SMP-15-004	
tro	Z	7 TeV	JHEP 10 (2011) 132	
lec	Z	8 TeV	PRL 112 (2014) 191802	
ш	Z	13 TeV	SMP-15-011	
	Wiz	7 ToV	PRD 89 (2014) 092005	
	Wy	13 TeV	PRI 126 252002 (2021)	
	Zv	7 TeV	PRD 89 (2014) 092005	
	Ζγ	8 TeV	IHEP 04 (2015) 164	
	ww	7 TeV	EPIC 73 (2013) 2610	
u	WW	8 TeV	EPJC 76 (2016) 401	
SOS	WW	13 TeV	PRD 102 092001 (2020)	
<u></u>	WZ	7 TeV	EPJC 77 (2017) 236	
0	WZ	8 TeV	EPJC 77 (2017) 236	
	WZ	13 TeV	Submitted to JHEP	
	ZZ	7 TeV	JHEP 01 (2013) 063	
	ZZ	8 TeV	PLB 740 (2015) 250	
	ZZ	13 TeV	EPJC 81 (2021) 200	
	VVV	13 TeV	PRL 125 151802 (2020)	
	www	13 TeV	PRL 125 151802 (2020)	
	WWZ	13 TeV	PRL 125 151802 (2020)	
Ę	WZZ	13 TeV	PRL 125 151802 (2020)	
oso	ZZZ	13 TeV	PRL 125 151802 (2020)	
-BC	$WV\gamma$	8 TeV	PRD 90 032008 (2014)	
Ē	$W\gamma\gamma$	8 TeV	JHEP 10 (2017) 072	
	$W\gamma\gamma$	13 TeV	JHEP 10 (2021) 174	
	Ζγγ	8 TeV	JHEP 10 (2017) 072	
	Ζγγ	13 TeV	JHEP 10 (2021) 174	
	VBF W	8 TeV	IHEP 11 (2016) 147	
	VBF W	13 TeV	EPIC 80 (2020) 43	
	VBF Z	7 TeV	JHEP 10 (2013) 101	
	VBF Z	8 TeV	EPJC 75 (2015) 66	
	VBF Z	13 TeV	EPJC 78 (2018) 589	
S	EW WV	13 TeV	Submitted to PLB	
VB	ex.γγ→WW	V8 TeV	JHEP 08 (2016) 119	
p	EW qqW γ	8 TeV	JHEP 06 (2017) 106	
ar	EW qqW γ	13 TeV	SMP-21-011	
/BF	EW os WW	13 TeV	Submitted to PLB	
	EW ss WW	8 TeV	PRL 114 051801 (2015)	
	EW ss WW	13 TeV	PRL 120 081801 (2018)	
	EW qqZy	8 IeV	PLB //U (2017) 380	_
		12 ToV	PRD 104 072001 (2021)	
	EW qqWZ EW qqZZ	13 TeV	PLB 812 (2020) 135992	σ (EW qqZZ)
	tt	7 TeV	JHEP 08 (2016) 029	
	ιι ++		JHEP U8 (2010) 029	
	ιι ++	13 6 ToV		
	t_{t-ch}	7 TeV	IHEP 12 (2012) 035	
	t_{t-ch}	8 TeV	IHEP 06 (2014) 090	
	t_{t-ch}	13 TeV	PLB 72 (2017) 752	
	tW	7 TeV	PRL 110 (2013) 022003	
	tW	8 TeV	PRL 112 (2014) 231802	
	tW	13 TeV	JHEP 10 (2018) 117	
d	t _{s – ch}	8 TeV	JHEP 09 (2016) 027	
Ĕ	ttγ	8 TeV	JHEP 10 (2017) 006	
	ttγ	13 TeV	Submitted to JHEP	
	tZq	8 TeV	JHEP 07 (2017) 003	
	tZq	13 TeV	Submitted to JHEP	
	ttZ	7 TeV	PRL 110 (2013) 172002	
	ttZ	8 TeV	JHEP 01 (2016) 096	
	tτ∠ tγ		JHEP 03 (2020) 056	
	د¥ ++۱۸/		FRE 121 221802 (2018)	
	ιινν ++\Λ/		TOP-21-011	
	tttt	13 TeV	EPJC 80 (2020) 75	
	ggH	7 TeV	EPJC 75 (2015) 212	
	yg⊓ aa⊔		EFJU 70 (2015) 212	
	yy⊓ VRF aa⊔		FPIC 75 (2015) 212	
	VDF QQH VRF qqH		EFJC 75 (2015) 212 FPIC 75 (2015) 212	
	vor yyH VRF aaH		Nature 607 60-68 (2022)	
sôf	VH	8 TeV	EPIC 75 (2015) 212	
Η̈́	WH	13 TeV	Nature 607 60-68 (2022)	
	ZH	13 TeV	Nature 607 60-68 (2022)	
	ttH	8 TeV	EPJC 75 (2015) 212	
	ttH	13 TeV	Nature 607 60-68 (2022)	
	tH	13 TeV	Nature 607 60-68 (2022)	
	НН	13 TeV	Nature 607 60-68 (2022)	
			4 ~	
			1 04	

1.0e-01

Measured cross sections and exclusion limits at 95% C.L. See here for all cross section summary plots

Inner colored bars statistical uncertainty, outer narrow bars statistical+systematic uncertainty σ **[fb]** Light colored bars: 7 TeV, Medium: 8 TeV, Dark: 13 TeV, Darkest: 13.6 TeV, Black bars: theory prediction

Overview of CMS cross section results

18 pb⁻¹ - 138 fb⁻¹ (7,8,13,

13.6 TeV)	
	36 pb ⁻¹ 18 pb ⁻¹ 43 pb ⁻¹ 36 pb ⁻¹ 18 pb ⁻¹ 2 fb ⁻¹
	5 fb ⁻¹ 137 fb ⁻¹ 5 fb ⁻¹ 20 fb ⁻¹ 5 fb ⁻¹ 19 fb ⁻¹ 36 fb ⁻¹ 5 fb ⁻¹ 20 fb ⁻¹ 137 fb ⁻¹ 5 fb ⁻¹ 20 fb ⁻¹ 137 fb ⁻¹
	137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 19 fb ⁻¹ 19 fb ⁻¹ 19 fb ⁻¹ 19 fb ⁻¹ 19 fb ⁻¹
	19 fb ⁻¹ 36 fb ⁻¹ 20 fb ⁻¹ 36 fb ⁻¹ 138 fb ⁻¹ 20 fb ⁻¹ 20 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹
	5 fb ⁻¹ 20 fb ⁻¹ 137 fb ⁻¹ 1 fb ⁻¹ 2 fb ⁻¹ 5 fb ⁻¹ 20 fb ⁻¹ 36 fb ⁻¹ 20 fb ⁻¹ 138 fb ⁻¹ 20 fb ⁻¹ 138 fb ⁻¹ 5 fb ⁻¹ 20 fb ⁻¹ 138 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 30 fb ⁻¹ 138 fb ⁻¹ 37 fb ⁻¹
	5 fb ⁻¹ 20 fb ⁻¹ 139 fb ⁻¹ 5 fb ⁻¹ 20 fb ⁻¹ 138 fb ⁻¹ 20 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹ 20 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹

First observation of rare $\eta \rightarrow 4\mu$ decay

PDG 2022

 $|\eta|$

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

CMS Experiment at the LHC, CERN Data recorded: 2017-Sep-26 01:42:22.588353 GMT Run / Event / LS: 303885 / 1462573361 / 1071

4 collimated muon tracks!

2017+2018 data

First observation of rare $\eta \rightarrow 4\mu$ decay

Leptonic radiative decays of the η and η' mesons

- happen via internal conversion of one or more photons
- not all observed yet!

Measurements are important

- Test Standard Model
- Sensitive to BSM scenarios (hidden photons, ALPs, ...)
- Contributes to hadronic light-by-light contributio

CMS obtained the first observation of the double dalitz decay of $\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

- Using 101 fb⁻¹ (2017+2018) of high-rate muon trigger data
- Uses decay $\eta \rightarrow \mu^+ \mu^-$ as normalization (13.8% precision)
- Acceptance x Efficiency (and systematics) is estimated from simulation for both channels

Charged modes charged modes $(28.04\pm0.30)\%$ $\pi^{+}\pi^{-}\pi^{0}$ Γg $(23.02\pm0.25)\%$ Γ₁₀ $\pi^+\pi^-\gamma$ $(4.28\pm0.07)\%$ $e^+e^-\gamma$ $(6.9 \pm 0.4) \times 10^{-3}$ Γ_{11} $(3.1 \pm 0.4) \times 10^{-4}$ Γ_{12} $\mu^+ \mu^- \gamma$ $e^+e^ \times 10^{-7}$ Γ₁₃ $\mu^+\mu^ (5.8 \pm 0.8) \times 10^{-6}$ I ₁₄ $2e^+2e^ (2.40\pm0.22)\times10^{-5}$ Γ_{15} $\pi^+\pi^-e^+e^-(\gamma)$ Γ₁₆ $(2.68\pm0.11)\times10^{-4}$ $e^+ e^- \mu^+ \mu^ \times 10^{-4}$ Γ₁₇ < 1.6 $2\mu^+ 2\mu^ \times 10^{-4}$ Γ₁₈ < 3.6

on to
$$a_{\mu}$$

Interlude: muon data scouting

- Standard dimuon triggers require muon $p_{\rm T}$ > 17 (8) GeV, resulting in rate of 30 Hz at $\mathscr{L} = 2 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$
 - Poor efficiency for $m_{\mu\mu} < 40 \,\mathrm{GeV}$
- Data Scouting = Dedicated trigger stream storing lacksquarereduced event information at higher rate
 - Starts from several L1 trigger paths (see table)
 - HLT selection: 2 muons with $p_{\rm T} > 3 \,{\rm GeV}$
 - Store only information from muons reconstructed at the HLT: 4–8 kB/event instead of 1MB, allowing storing 2kHz
- Data Scouting succesfully used in CMS for dijet \bullet resonance searches as well (jet $H_{\rm T}$ triggers)
- Program continuing in Run 3

2017+2018 data

L1 path	<i>p</i> _T [GeV]	$ \eta $	ΔR	<i>m</i> _{μμ} [GeV]	Efficie
#1	> 4,4.5	_	< 1.2	_	83%
#2	_	< 1.5	< 1.4	_	44%
#3	> 15/7	_	_	_	42%
#4	> 4.5	< 2.0	_	7–18	8%

First observation of rare $\eta \rightarrow 4\mu$ decay

 4μ channel

Reference channel

- $N(\eta \rightarrow 2\mu) \approx 4.5 \mathrm{M}$, $10^{12} \eta$ produced \checkmark $\mathscr{B}(\eta \to 2\mu)$
- Huge sample size enables study of rare decay channels

2017+2018 data

 $N(\eta \to 4\mu) = 49.6 \pm 8.1$ N(background) = 16.6 ± 0.6

Significance > 5σ

To extract branching fraction, lacksquareneed to correct for the difference in acceptance and efficiency

First observation of rare $\eta \rightarrow 4\mu$ decay

2017+2018 data

Extract $\mathscr{B}(\eta \to 4\mu)$ using $\eta \to 2\mu$ as a normalization, including corrections based on different acceptance

$$\frac{\mathscr{B}(\eta \to 4\mu)}{\mathscr{B}(\eta \to 2\mu)} = \frac{N_{4\mu}}{\sum_{i,j} N_{2\mu} \frac{A_{4\mu}^{i,j}}{A_{2\mu}^{i,j}}}$$
$$\frac{\mathscr{B}(\eta \to 4\mu)}{\mathscr{B}(\eta \to 2\mu)} = (0.9 \pm 0.1 \text{ (stat)} \pm 0.1 \text{ (syst)}) \times 1$$

Reference branching fraction: $\mathscr{B}(\eta \to 2\mu) = (5.8 \pm 0.8) \times 10^{-6}$

 $\mathscr{B}(\eta \to 4\mu) = (5.0 \pm 0.8 \,(\text{stat}) \pm 0.7 \,(\text{syst}) \pm 0.7 \,(\mathscr{B})) \times 10^{-9}$

- Branching fraction expected from the SM: $\mathscr{B}(\eta \to 4\mu)^{SM} = (3.98 \pm 0.15) \times 10^{-9}$
- **Measurement is in agreement within uncertainties**

Scouting for low-mass dimuon resonances

- Can also use data scouting to extend reach in search for dimuon resonances to lower masses
 - Targeted mass range: 1.1-2.6 GeV and 4.2-7.9 GeV, excluding region of J/ψ , ψ ' and Y(1S)
 - Motivated by e.g. dark photons Z_D with kinetic mixing ε or 2HDM with extra scalar
 - Analysis assumes narrow resonance coming from the primary vertex
- Offline analysis: lacksquare
 - 2 muons with $p_{\rm T}$ > 4 GeV, $|\eta|$ <1.9
 - Optimized muon identification for low masses using two BDTs lacksquare
 - Fit to dimuon invariant mass spectrum in discrete mass windows of 5x experimental resolution (1.3%)

Search for inelastic dark matter

- **First search for inelastic DM at a hadron collider**
 - •
- Signature: p_{T}^{miss} collimated with 2 displaced muons

- Signal regions defined by number of displaced muons matched with standard muons
- Backgrounds predicted via ABCD method using min- d_{xy} vs. relative isolation or $\Delta \phi(\mu \mu, p_{T}^{m_{1}ss})$

m₁[GeV]

- W and Z production are some of the best understood processes at hadron \bullet colliders, both theoretically & experimentally
- Clean laboratory to study QCD \bullet
 - Study PDF's, subtle pQCD effects
 - Important background to Higgs & BSM searches
- Precision electroweak measurements are sensitive to BSM physics
- Many results published since 2010! \bullet
 - Differential cross section measurements of W, Z, diboson, triboson, ...
 - Properties such as branching fractions/width, asymmetries \bullet
 - Searches for rare/exotic decays lacksquare
 - . . .

W

W

Ζ

Ζ

Ζ

Y	
σ	
Ð	
≥	
0	
Ľ	
t	
Ō	
Ē.	

7 TeV	JHEP 10 (2011) 132
8 TeV	PRL 112 (2014) 191802
13 TeV	SMP-15-004
7 TeV	JHEP 10 (2011) 132
8 TeV	PRL 112 (2014) 191802
13 TeV	SMP-15-011

36 pb⁻¹

18 pb⁻¹

43 pb⁻¹

36 pb⁻¹

18 pb⁻¹

2 fb⁻¹

.

550

600

 $Z \rightarrow inv$

500

 $\Gamma_{\rm inv}$ (MeV)

450

400

2016-2018 data Search for long-lived heavy neutral leptons decaying to jet + $e/\mu/\tau$

- HNL with small masses or couplings are longlived: $c\tau \circ$ Coupling not restricted to single generation
- Search relies on displaced jet tagger
 - Deep neural network, domain adaptation to reduce data vs MC differences
 - Multi-class output: jets from q/g, pileup, prompt ℓ/γ , displaced jet
- Search categories based on lepton flavor & charge, $\Delta R(l_2, \text{jet})$, and displacement
- Backgrounds estimated via ABCD method in data using m_{lli^*} and NN score

$$\mathbf{x} \frac{1}{|V_{lN}|^2 (m_N)^5}$$

Trigger on prompt lepton

Measurement of τ polarization in Z decays

- τ polarization measurements can probe underlying EWK parameters A_{τ} , $\sin^2(\theta_{\rm W})$
- Measurement considers 11 different categories of T decays (leptonic & hadronic)
 - Uses optimal observables depending on category
 - Backgrounds estimated using data control regions
 - Simultaneous fit over all categories to extract polarization (Muon channels most sensitive)
- Comparable precision to single LEP experiments!

- $P_{\tau}(Z) = -0.144 \pm 0.006 \text{ (stat)} \pm 0.014 \text{ (syst)}$
- Agrees with SM value of $A_{\ell} = 0.1468 \pm 0.0003$
- Results in $\sin^2 \theta_{\text{eff}} = 0.2319 \pm 0.0019$

Search for $Z \rightarrow \mu\mu\tau\tau$ decay

CMS was first to measure rare decays $Z \to J/\psi \ell^+ \ell^$ and $Z \rightarrow \ell^+ \ell^- \ell^{'+} \ell^{'-}$ (with $\ell = e, \mu$), which are sensitive to BSM physics (e.g. new Z' particles)

Effort goes on with decays to τ , which are especially motivated in some BSM models ($\mathscr{B}_{SM} \approx 10^{-6}$)

- Search only considers $\tau \rightarrow \mu \bar{\nu}_{\mu} \nu_{\tau}$ decays lacksquare
- Final state: 4 isolated muons with sum(charge) = 0, \bullet $40 \,\text{GeV} < m_{\mu\mu\mu\mu} < 100 \,\text{GeV},$ $12 \,\text{GeV} < m_{\mu^+\mu^-}^{\text{max}} < 75 \,\text{GeV}$
- Background from nonprompt muons estimated via isolation sidebands in data
- Signal expected as broad distribution peaking below m_{7}

2016-2018 data

 No observation so far $\mathscr{B}(Z \to \mu^+ \mu^- \tau^+ \tau^-)$ - 67

•
$$\overline{\mathscr{B}(Z \to \mu^+ \mu^- \mu^+ \mu^-)} < 0.2$$

• $\mathscr{B}(Z \to \mu\mu\tau\tau) < 6.9 \times \mathscr{B}_{SM}(Z \to \mu\mu\tau\tau)$

2016-2018 data Observation of WWy production

Process	$\sigma_{\rm up}$ pb exp.(obs.)	Yukawa couplings limits exp
$u\overline{u} \rightarrow H + \gamma \rightarrow e\mu\gamma$	0.067 (0.085)	$ \kappa_{\rm u} \leq 13000 \ (16000)$
$d\overline{d} \rightarrow H + \gamma \rightarrow e\mu\gamma$	0.058 (0.072)	$ \kappa_{\rm d} \leq$ 14000 (17000)
${ m s} \overline{ m s} ightarrow { m H} + \gamma ightarrow { m e} \mu \gamma$	0.049 (0.068)	$ \kappa_{\rm s} \le 1300$ (1700)
$c\overline{c} ightarrow H + \gamma ightarrow e \mu \gamma$	0.067 (0.087)	$ \kappa_{\rm c} \leq 110(200)$

.(obs.)

Observation with 5.6σ $\sigma = 6.0 \pm 1.7 \,\text{fb} = 6.0 \pm 1.0 \,(\text{stat}) \pm 1.0 \,(\text{syst}) \pm 0.9 \,(\text{th}) \,\text{fb}$ In agreement with the SM prediction

Nature 607, 60-68 (2022)

Celebrated 10 year anniversary of the Higgs boson discovery in 2022!

- Remarkable transition from initial discovery to precision measurements
- Efforts expanding into exotic decays, searching for other Higgs-like particles, etc.

Higgs

Lepton-flavor violation in Higgs sector: search for $H \rightarrow e \mu$

eμ) [fb]

×

a(pp

CL limit on

95%

- LFV decays of Higgs forbidden in SM, but arise in BSM scenarios
 - Prior bound: $\mathscr{B}(H \rightarrow BSM) < 0.16$
- Search considers any resonance with mass of 110-160 GeV
 - Selects opposite-charge e-µ pair
 - Categorization based on production mode: ggF and VBF
 - Further categorized based on BDTs for signal vs background
 - m_{eu} distribution fit in data with Bernstein polynomial for background, and interpolated sum of Gaussians for signal

No excess observed at mass of 125 GeV: $\mathscr{B} < 4.4(4.7) \times 10^{-5}$ ATLAS: $\mathscr{B} < 6.2(5.9) \times 10^{-5}$

Slight excess observed at mass of 146 GeV: 2.80 global (3.80 local) Not observed in similar search by ATLAS

Exotic decays of the Higgs

- Light pseudoscalars appear in many BSM models (2HDM, 2HDM+S, NMSSM, ALPs)
- Possible search channels include $H \rightarrow aa$ and $H \rightarrow Za$

HIG-22-007

$H \rightarrow aa \rightarrow \mu\mu bb/\tau\tau bb$

- $H \rightarrow aa \rightarrow \mu\mu bb$
- 2 muons with $m_{\mu\mu}$ in 14-70 GeV
- Require compatibility of $m_{\mu\mu}$ with $m_{\rm bb}$ and $m_{\mu\mu bb}$ with $m_{\rm H}$
- $H \rightarrow aa \rightarrow \tau \tau bb$
- 3 final states: $e\mu$, $e\tau_h$, $\mu\tau_h$
- Use DNN for S vs B using kinematic variables as input

No significant excess observed

2016-2018 data

- Used BDT with $m_{a,hyp}$ as input parameter to allow for single training with interpolation between signal masses
- Events categorized based on BDT output for each mass hypothesis

No significant excess observed

Search for SM-like Higgs [70–110 GeV] in $\gamma\gamma$ channel

- BSM models (e.g 2HDM or NMSSM) predict additional \bullet Higgs bosons which could be lighter than 125 GeV and could evade the LEP bounds
- Search is done in final state with 2 photons with ullet $m_{\gamma\gamma} \in [70, 110] \, \text{GeV}$
 - Extension of HIG-17-013 with final detector calibrations, full Run 2, and addition of VBF category
- MVA techniques used for photon identification and \bullet event classification
- Main backgrounds: \bullet
 - direct diphoton production \bullet
 - photon+jet and jet+jet production where jet is \bullet misidentified
 - DY to ee, where electrons are misidentified as \bullet photons
- Backgrounds fit with parametric functions using discrete profiling method

Largest excess at 95.4 GeV, local: 2.9 σ , global: 1.3 σ (Not visible in 2017)

Exclude SM cross section x branching fraction for full considered mass range

Di-Higgs production

Searches for di-Higgs production

HIG-21-005

$HH \rightarrow bbWW$

- Final states with ≥ 1 lepton
- $H \rightarrow bb$ decay identified using btagging for either small (resolved) or large (boosted) radius jets
- DNN used for signal extraction

HH cross section constrained to be at most 14 (18) times the SM expectation.

Also places limits on HH production via heavy resonance.

2016-2018 data

HH associated production with W/Z

- Construct $HH \rightarrow bbbb$ from 4 jets with highest b-tag scores
- All W/Z decays considered
- Use BDT to divide events into κ_{λ} and κ_{2V} enriched regions

HH cross section constrained to be at most 288 (122) times the SM expectation.

- Single experiment sensitivity below the SM @ HL-LHC
- 5-sigma evidence for di-Higgs production at the HL-LHC quite possible

Di-Higgs production

Quartic coupling modifier: $0.67 < \kappa_{2V} < 1.38$.

 $\kappa_{2V} = 0$ is excluded with 6.6 σ , establishing the existence of the quartic coupling VVHH

Top quarks

There is a vibrant top quark physics program at CMS!

- Cross sections of many processes
- Top quark mass and other properties
- BSM in top quark decays

Two categories: ullet

TOP-22-005

- LFV production: $m_{e\mu} > 150 \,\text{GeV}$ lacksquare
- LFV decay: $m_{e\mu} < 150 \,\text{GeV}$ ullet
- Background estimation: lacksquare
 - prompt with MC & CR (WZ) \bullet
 - non-prompt (DY and $t\bar{t}$): data-driven using looser lepton ulletselection, validated in validation regions using eee, $\mu\mu\mu$ events
- Signal extraction using binned BDT distribution

No evidence of LFV observed.

Limits set on branching fraction and Wilson coefficients.

LFV in top quark sector

Observation of four top quark production

Observation of four top quark production

 $t\bar{t}t\bar{t}$ cross section sensitive to top quark ulletYukawa coupling, can constrain 2HDM, SUSY, and other BSM models, input to **EFT** interpretations

- Uses events with 2 SS, 3, and 4 leptons (e/μ) and additional jets
- Improved result by using ML methods for:
 - lepton identification and b jet tagging
 - distinguishing between signal & background processes via multiclassification ($t\bar{t}t\bar{t}$, $t\bar{t}X$, $t\bar{t}$), separately for 2 and 3/4 lepton events
- Background estimation:
 - Prompt backgrounds estimated from simulation with constraint from data control regions
 - Non-prompt backgrounds ulletestimated using data sidebands
- Signal extraction using BDT scores and jet multiplicity distribution in signal and control regions

2016-2018 data

Observation of four top quark production

2016-2018 data

Searches for BSM physics: too many to count!

Overview of CMS long-lived particle searches

The BSM landscape

Dark Matter Mountains

Mount SUSY 🗖

Gluino/Squark Slopes

Stealth SUSY Valley

Vector-like Quark Ridge

Extra hensions Glade

Dark Photon Hollow

The comfort of the Standard Model and the set of the set

Combination of electroweak SUSY searches

- \bullet non-compressed mass spectra. Several new interpretations compared to earlier results.
- **Combines 6 searches using the full LHC Run 2 data set:**

Leptonic	"2/3L soft" 2 or 3 e(μ), including OS SF pair, 5(3.5)< lepton p _T < 30 GeV Targeting compressed spectra	2 S
(Semi) Hadronic	"1I 2b" - WH 1 e(μ), H→bb tag Targeting compressed spectra	2

- Hadronic WX analysis is new addition to the combination, ulletimproving the sensitivity in the non-compressed region
- 2/3L soft was updated for the combination to include a \bullet parametric signal extraction which improves the sensitivity to compressed mass spectra
 - m_{ll} binning optimized per $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1)$ signal hypothesis to exploit kinematic end point

Targets electroweak production of charginos and neutralinos, as well as sleptons for compressed and

OS/SS = opposite/same sign (charge) SF = same flavor

"**≥** 3I"

SS e/ μ , or \geq 3 leptons (up to 2 τ_{had}) Leading lepton $p_T > 30 \text{ GeV}$

$2 e(\mu) OS SF$, Either on- or off-shell Z

"4b" - HH

No leptons 2 tagged Higgs bosons ($H \rightarrow bb$)

"Hadr. WX"

"2l on-Z/non-resonant"

Fully hadronic final state; \geq 2 jets (AK8), and 2-6 jets (AK4)

SUS-21-008 Combination of electroweak SUSY searches Results for wino-like $\tilde{\chi}_1^{\pm} \& \tilde{\chi}_2^0$ (with bino-like $\tilde{\chi}_1^0$)

Addition of the hadronic WX search improves sensitivity to higher $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ masses in the uncompressed region

2/3L soft and $\geq 3L$ analyses are complementary

- orthogonal lepton $p_{\rm T}$ ranges
- Different selections (e.g. 2/3L soft requires $p_{\rm T}^{\rm miss}$) lacksquare

Combination closes the gap!

Mild excess observed around $\Delta m = 30$ and 40 GeV, stemming from both analyses

2016-2018 data **SUS-21-008 Combination of electroweak SUSY searches Results for sleptons & quasi-degenerate higgsinos in GMSB**

Sleptons (e/µ)

Uncompressed region covered by the 2-lepton non-resonant analysis

NEW: 2/3I soft analysis provides sensitivity to the compressed region $(m_{ll} \text{ replaced by } M_{T2})$

Sleptons excluded up to 215 (235) GeV at $\Delta m=5$ GeV

Higgsino triplet $(\tilde{\chi}_2^0, \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$ with small Δm : results in effective $\tilde{\chi}_1^0 \tilde{\chi}_1^0$ production, with $\tilde{\chi}_1^0 \rightarrow \tilde{G} + H/Z$ 4b (HH) analysis most sensitive for large $\mathscr{B}(\tilde{\chi}_1^0 \to H\tilde{G})$

Search for SUSY with 1 photon, jets, and $p_{\rm T}^{\rm m_{1SS}}$

- Require $S_{\rm T}$ > 300 GeV (scalar $p_{\rm T}$ sum of γ + jets)

Search for Stealth SUSY with 2 photons and jets

Stealth SUSY: MSSM + light hidden sector containing singlino \tilde{S} and singlet S, with gravitino LSP

 \rightarrow naturally produces low $p_{\rm T}^{\rm miss}$ signatures

Search looks for gluino and squark production with decays

through the neutralino: $\tilde{\chi}_1^0 \to \gamma \tilde{S}, \ \tilde{S} \to S \tilde{G}, \ S \to gg$

Selection:

- 2 photons and \geq 2 jets
- No requirement on $p_{\rm T}^{\rm miss}$
- $S_{\rm T}$ > 1300 GeV (scalar $p_{\rm T}$ sum of all objects)

Signal extraction based on $S_{\rm T}$ and binned in jet multiplicity $(4, 5, \text{ or } \ge 6 \text{ jets})$

Data-driven background estimation using the $S_{\rm T}$ shape in events with low $N_{\rm iets}$

Exclude gluinos & squarks with masses up to 2.15 & 1.85 TeV

Strongest limits to date for these models!

2016-2018 data

2016-2018 data Search for dark matter in W+W- events with $p_{\rm T}^{\rm m_{1SS}}$

- (dominant decay for $m_S > 160 \,\text{GeV}$)
- Selection: 1 or 2 leptons, no b-tagged jets
- variables related to the leptons and $p_{\rm T}^{\rm miss}$

Search for $W' \rightarrow tb$ in leptonic final states

- - Use $m_{\rm W}$ to constrain neutrino $p_{_{7}}$ •
 - •

2016-2018 data

Dijet cross section

Note the x-axis range up to 10 TeV!

- 2D in rapidity y_{max} and invariant mass $m_{1,2}$ of dijet system
- 3D in rapidity separation y^* , total boost y_b and either $m_{1,2}$ or the average p_T of the dijet system
- Unfolded results are compared to fixed order NNLO calculations from NNLOJET

- Extract PDFs using this data together with HERA DIS
- General reduction of systematic uncertainties
- General agreement with/without CMS data

Conclusion

for precision measurements and searches • It is truly a multipurpose experiment!

learning methods to extract the most from our excellent data

• For more results, please visit our <u>public results web pages</u>! And stay tuned for Run 3 results in the future!

- CMS continues the exploration of the particle physics landscape, both
- Analyses are using sophisticated analysis methods, including machine

