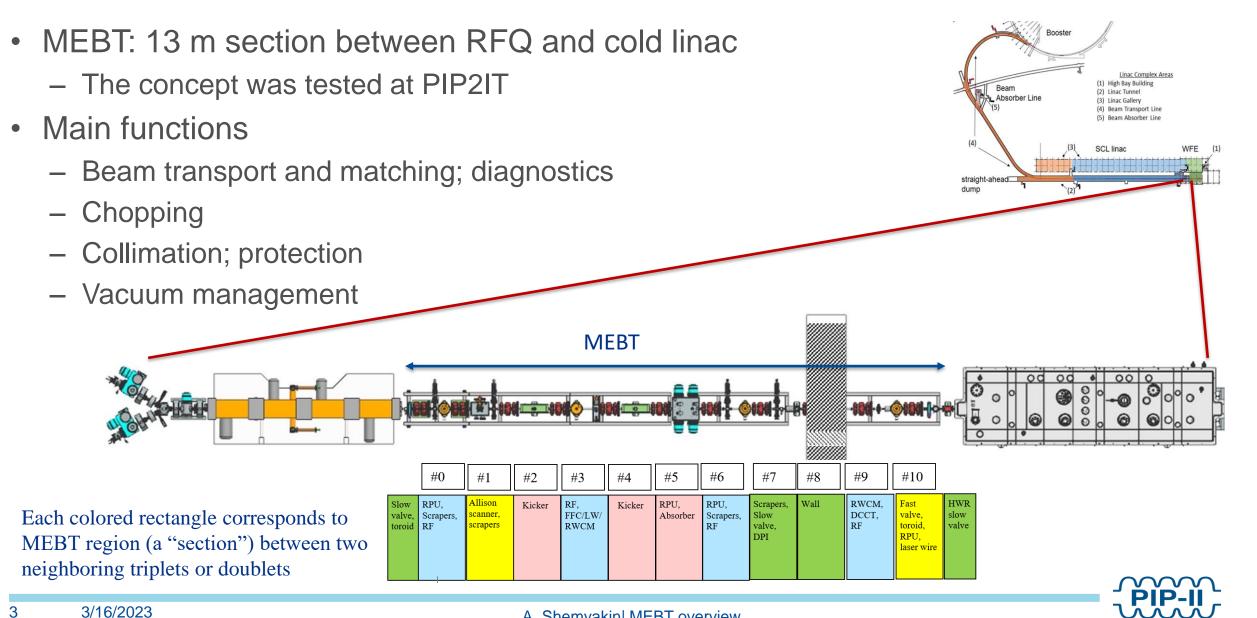
### 



### **MEBT** beam line overview

Alexander "Sasha" Shemyakin PIP-II MEBT FDR March 16, 2023 PIP-II is a partnership of: US/DOE India/DAE Italy/INFN UK/STFC-UKRI France/CEA, CNRS/IN2P3 Poland/WUST




### Outline

- Introduction
- PIP-II MEBT configuration
- Experience with PIP2IT MEBT
- PIP-II MEBT commissioning
- Summary



### Introduction



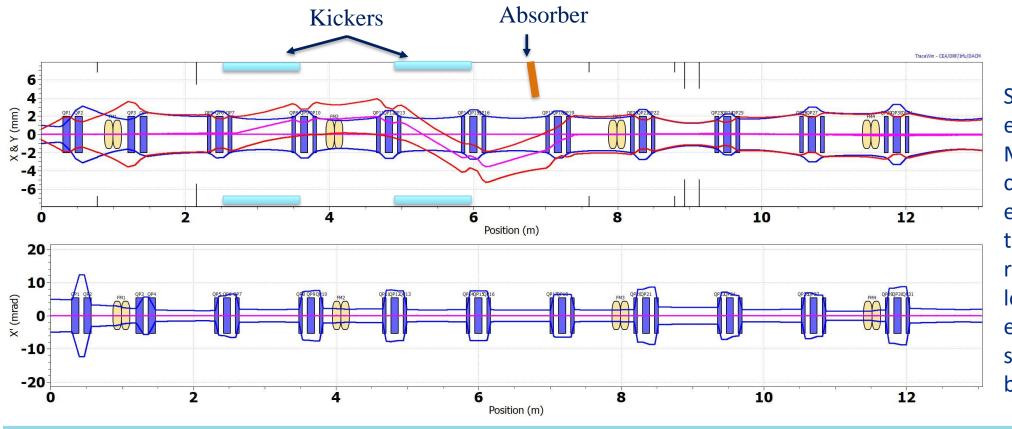
# **PIP-II MEBT peculiarities**

- Bunch-by-bunch chopping system
  - Two kickers and absorber: 3 sections
- MEBT is right upstream of SRF linac

|                          | #0        | #1                              | #2     | #3                     | #4     | #5               | #6                      | #7                                 | #8   | #9                   | #10                                             |                      |
|--------------------------|-----------|---------------------------------|--------|------------------------|--------|------------------|-------------------------|------------------------------------|------|----------------------|-------------------------------------------------|----------------------|
| Slow<br>valve,<br>toroid | Serupers, | Allison<br>scanner,<br>scrapers | Kicker | RF,<br>FFC/LW/<br>RWCM | Kicker | RPU,<br>Absorber | RPU,<br>Scrapers,<br>RF | Scrapers,<br>Slow<br>valve,<br>DPI | Wall | RWCM,<br>DCCT,<br>RF | Fast<br>valve,<br>toroid,<br>RPU,<br>laser wire | HWR<br>slow<br>valve |

- Need to transition from high-vacuum of RFQ to ultra-high vacuum, particle-free sections near the HWR cryomodule. ~ 1 section (Differential Pumping Insert, DPI).
- Decided to include a radiation wall shielding the High-Bay Building from the linac
  - 1 section
- Need to protect the kickers and the cold linac from errant beam and beam tails
  - Included 4 scraper "stations" with 4 independent scraper plates in each
- Each addition comes with "overhead" of additional focusing
  - 4 bunching cavities; 45% of the MEBT length is occupied by magnets
- Total length 13 m
- The concept of the MEBT was tested at PIP2IT



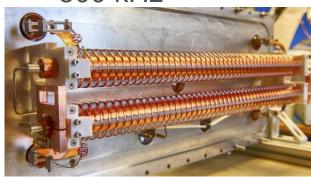

## Outline

- Introduction
- PIP-II MEBT configuration
- Experience with PIP2IT MEBT
- PIP-II MEBT commissioning
- Summary



### **Beam in PIP-II MEBT**

- Focusing with quadrupole doublets and triplets transversely and with 4 bunching cavities longitudinally.
  - Smooth envelopes. Designed for CW operation.

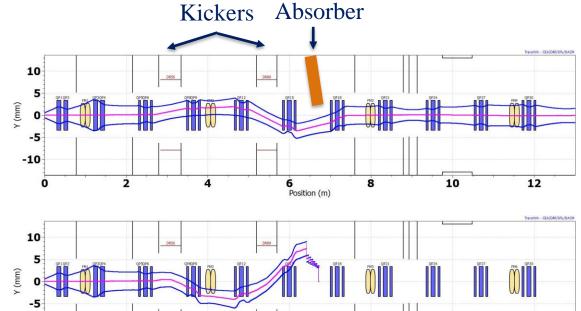



Simulated rms envelopes in PIP-II MEBT. Z=0 corresponds to the end of RFQ. Upper – transverse (blue-X, red-Y), lowerlongitudinal. The envelopes are shown for "5 mA" bunches. A. Pathak.



# Chopping system (= 2 kickers + absorber + optics)

- Two travelling wave kickers operating in sync direct the beam to absorber
  - 180° phase advance between kickers
  - 90° between last kicker and absorber
- $\sim 6\sigma_v$  separation at the absorber
- Any bunch from initially CW sequence can be either removed or passed
  - Maximum average switching frequency is
    500 kHz

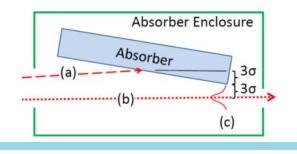



Fully assembled kicker's two-helix structure.



3D model of absorber. 20 kW rating.

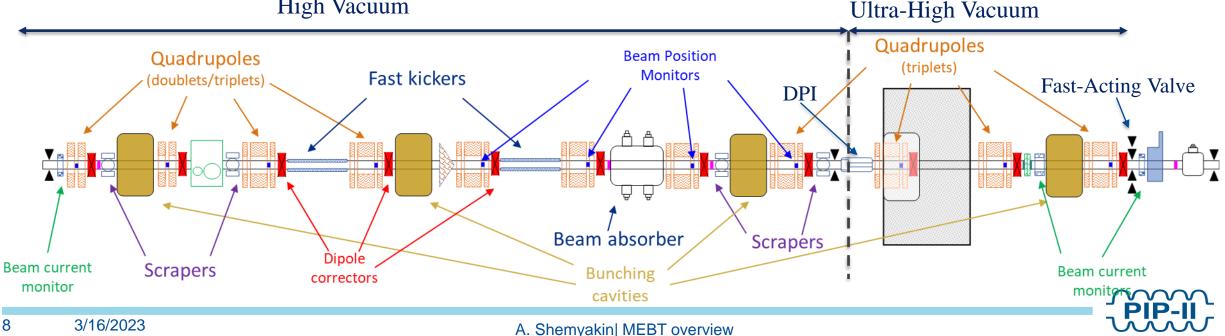
2




Rms vertical envelopes in PIP-II MEBT. Top – passing bunches, bottom- removed bunches. A. Pathak.

Position (m)

10


12

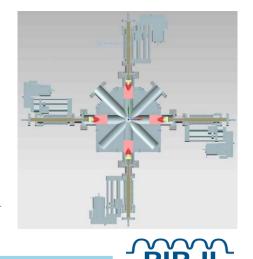




### Vacuum

- The most downstream MEBT sections are particle-free, UHV (< 10<sup>-8</sup> Torr)
- The upstream sections are High Vacuum (<10<sup>-6</sup> Torr)
- Separated by Differential Pumping Insert (DPI)
  - 200 mm long, 10 mm ID pipe. One of the restrictions in beam optics.
  - Suppresses flow of hydrogen from the absorber for the case of a high-power beam
  - Delays the shock wave in a case of a vacuum accident upstream High Vacuum



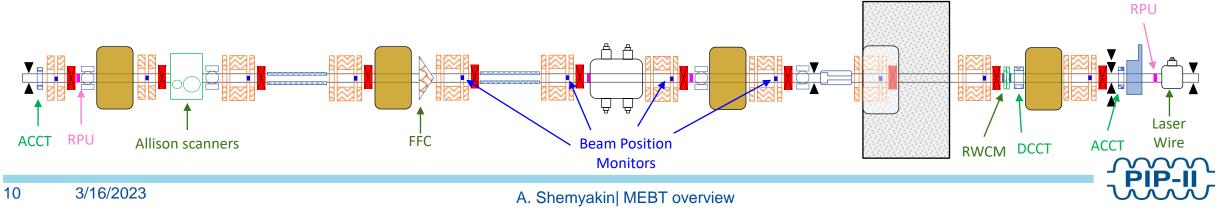

# Scraping system

- 4 MEBT locations with 4 plates in each can
  - Independently movable, radiation -cooled. Rating: 75 W/plate, 200 W/can
- Usage
  - Decrease losses downstream
  - Protect from beam focusing and position errors
    - When kept near the beam boundary for highpower operation
  - Create a pencil beam for commissioning
  - Used for measuring the beam transverse size





Scraper plates in the positions to create a pencil beam



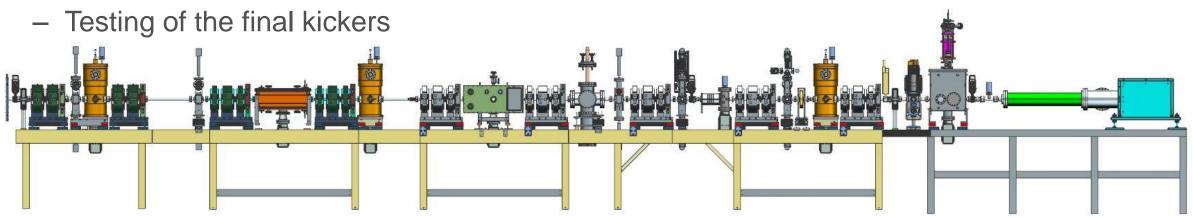

Cartoon of scraper can with mounted plates

Mounted

### **Diagnostics**

- 11 BPMs: X/Y positions and phase in each
- Beam Current Monitors: 2 ACCT, 1 DCCT
- 2 Allison scanners (X and Y): transverse density distribution in phase space
- Resistive Wall Current Monitor: analysis of the bunch pattern and extinction
- 4 Wire Scanners (in each scraper can): transverse distribution
- Fast Faraday Cup: bunch length
- Laser Wire: non-interceptive measurement of bunch parameters
- 4 Ring Pickups (RPU): monitoring relative changes in beam current for MPS
- Reading of currents from kicker protection electrodes, DPI, and scrapers



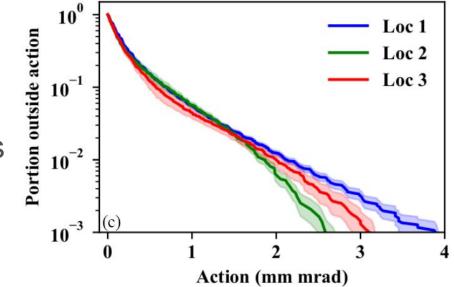

### Outline

- Introduction
- PIP-II MEBT configuration
- Experience with PIP2IT MEBT
- PIP-II MEBT commissioning
- Summary



# **PIP2IT MEBT: testing all solutions**

- PIP2IT MEBT was assembled in several steps in 2016 2018
  - In the final configuration, it had all main features of future PIP-II MEBT
  - The beam properties were measured at the end of the beamline
    - Main characterization of the MEBT solutions
- Run 2020 2021
  - beam operation was interleaved with assembly and RF commissioning
  - Mostly providing the beam to SRF linac

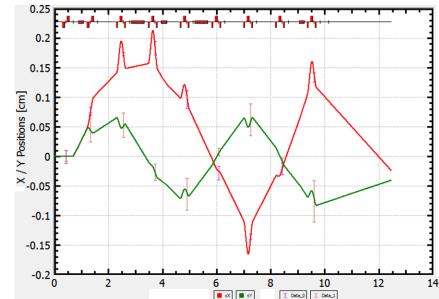


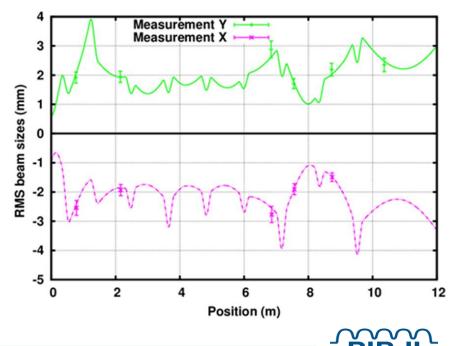

#### PIP2IT MEBT in 2018 configuration.



### Main results from 2018

- All subsystems (or prototypes) were successfully tested
  - Optics, kickers, diagnostics, bunchers, magnets, vacuum, scraping, MPS
    - Some at prototype level
- No significant emittance growth through the MEBT
- Tuning procedures were developed
- High power beam was transported with low losses
  - 1 min at 50% duty factor; 6 hrs without trips at 7%
    - no chopping
    - PIP-II needs 1.1%
- Tested fast-valve vacuum protection

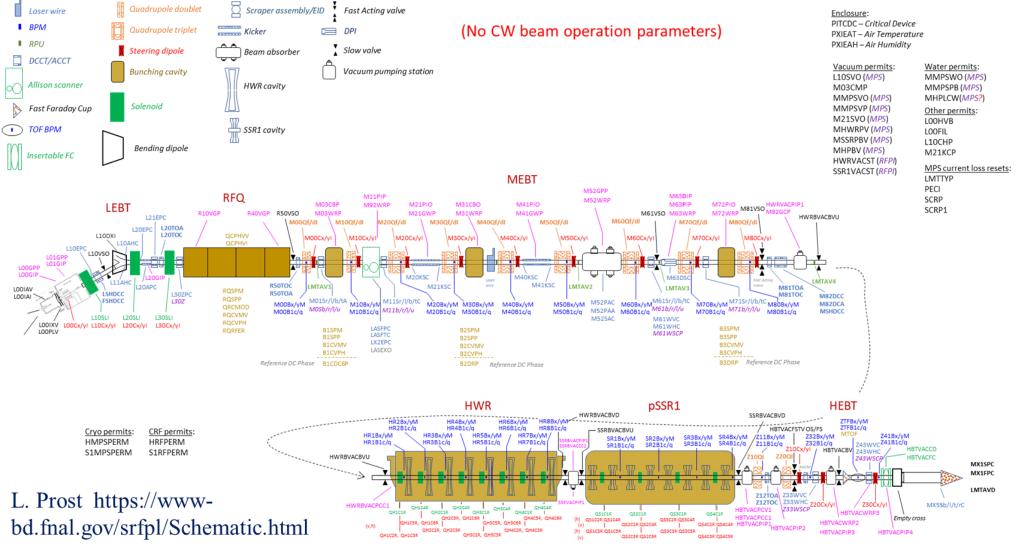




Phase distribution measured at the beginning of MEBT (Loc 1,  $\varepsilon_{rms_n}$ =0.20 µm), in the middle (Loc 2, 0.19 µm), and at the end (Loc 2, 0.22 µm). Pulse current is 5 mA; not chopped. ~1% of the beam is scraped. The beam is on axis.



# **Optics**

- Optical solutions were found satisfactory
- Good agreement of simulations with measurements
  - After resolving initial contradiction related to overlapping fields in triplets



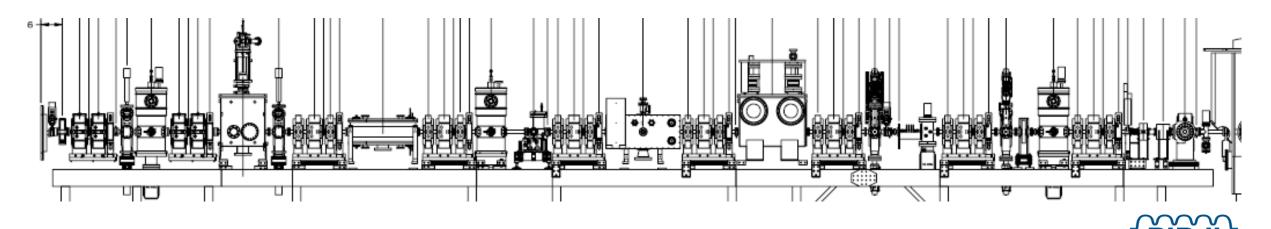



Comparison of simulation and measurements for differential trajectories (top) and beam envelope (bottom). 2018 configuration.

### **PIP2IT in 2021**

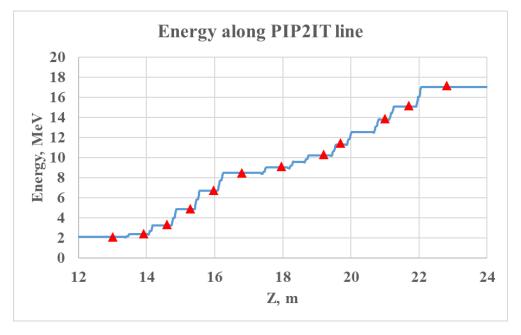
#### PIP2IT beamline devices

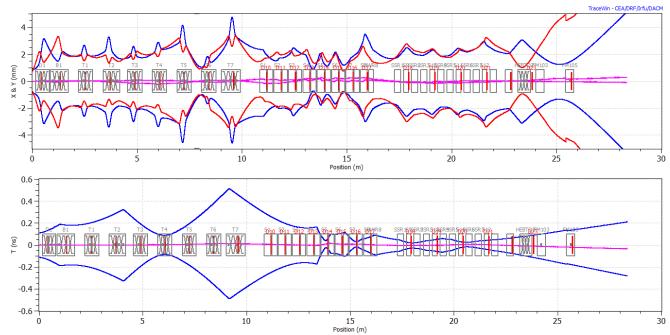





15 3/16/2023

10/13/2020


### MEBT in 2021 run


- Main MEBT modifications from 2018
  - "Production" kickers and their drivers are installed
  - "Production" absorber instead of a prototype
    - Because of a manufacturing error, it was installed in a compromised configuration
      - Good for probably ~5 kW beam instead of specified 20 kW (need 100 W for PIP-II)
  - Transition section to cryomodules
  - New MPS, Laser wire, wire scanner, improved scrapers...
- Main emphasis: providing the beam into the cryomodules; kickers



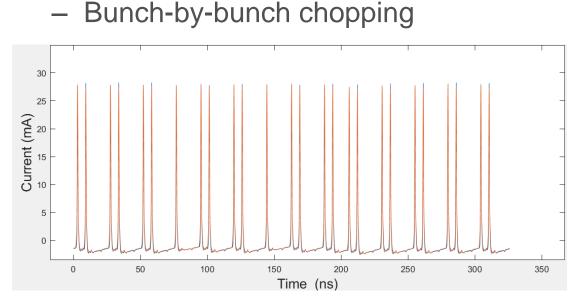
## Peculiarity of 2021 run

- The first 3 HWR cavities were not operational
- With re-tuned MEBT, the beam was still accelerated through the cryomodules
  - To 16 MeV (vs initially expected 23 MeV)
  - The beam phase distributions were affected

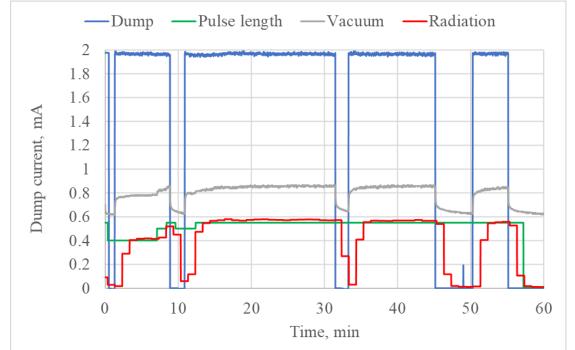




Comparison of beam energy measured (red) and simulated (blue).


Simulated rms envelopes in PIP2IT. Z=0 corresponds to the end of RFQ. Upper – transverse (blue-X, red-Y), lower- longitudinal.

17 3/16/2023


A. Shemyakin| MEBT overview

## Main 2021 results (MEBT – related)

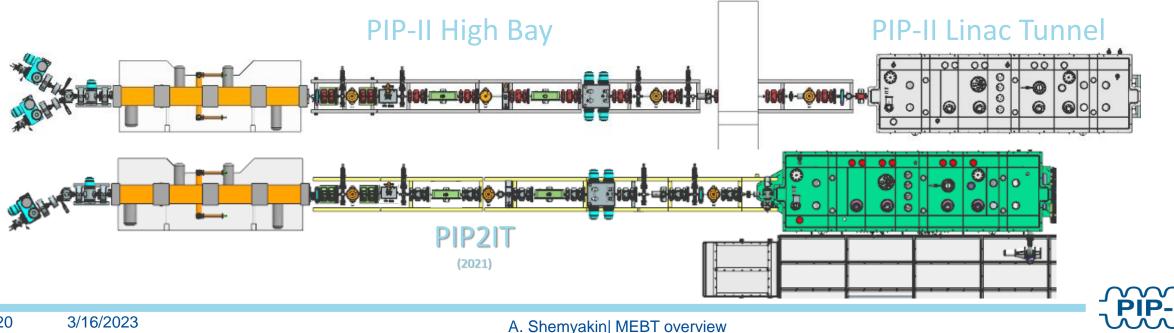
- MEBT optics was predictable; the beam was reliably delivered to cryomodules
- Kickers provided the pattern expected for PIP-II (Booster injection)



Bunch pattern of 16 MeV beam measured with HEBT RWCM. Residual population of the removed bunches is <0.1%.



Parameters during one of the runs with "Booster injection" parameters. Blue – dump current (mA), green – pulse length (ms), gray – vacuum near the dump (in 10<sup>-7</sup> Torr), red – radiation at the downstream end of SSR1 (in 100 mR/hr). 16 MeV beam.


### **Conclusion and lessons from PIP2IT (relevant to the talk)**

- The main conclusion: in general, the MEBT design is sound and good for PIP-II
  - All subsystems performed reasonably well
- Lessons affected PIP-II MEBT design (from 2018)
  - Re-distribute the bunchers more evenly. Helps with emittance preservation.
  - Move all scraping out of the low-particulate area. Allows for more aggressive scraping.
  - The distance between fast-acting vacuum valve and HWR entrance can be shorter than envisioned originally. Ended up by shortening the PIP-II MEBT design by one section.
  - Beam size measurements with scrapers can't characterize tails. Add Wire scanners into the same vacuum cans.



### From PIP2IT to PIP-II

- The scheme and most of elements are the same. Expect the same performance.
  - PIP-II MEBT is longer by 2 sections (radiation wall and extra bunching cavity)
  - Moving the DPI one section downstream so that there are no scrapers in UHV area
  - Shuffling and adding diagnostics, moving upstream 3<sup>rd</sup> bunching cavity, ...
- See Lionel's second talk for details



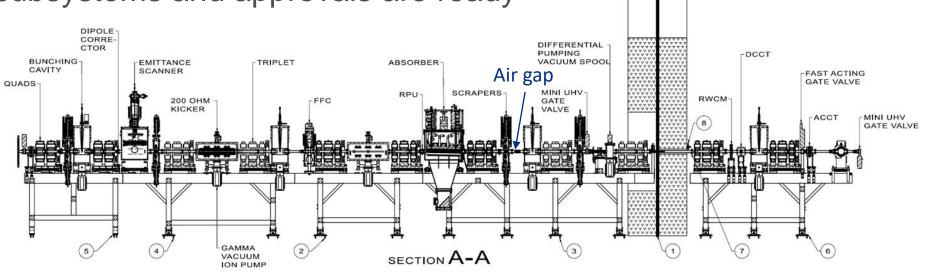
### Outline

- Introduction
- PIP-II MEBT configuration
- Experience with PIP2IT MEBT
- PIP-II MEBT commissioning
- Summary



# **Commissioning of PIP-II MEBT: Prerequisites**

• Configuration:


22

3/16/2023

– MEBT is fully assembled but with air gap instead of spool piece upstream of the Buncher 3

WALL

- Safety requirement
- If a temporary beam dump can be installed as well, it would be a big plus.
  - Under investigation.
- Ion source and LEBT are beam-commissioned. RFQ is RF commissioned.
- All subsystems and approvals are ready

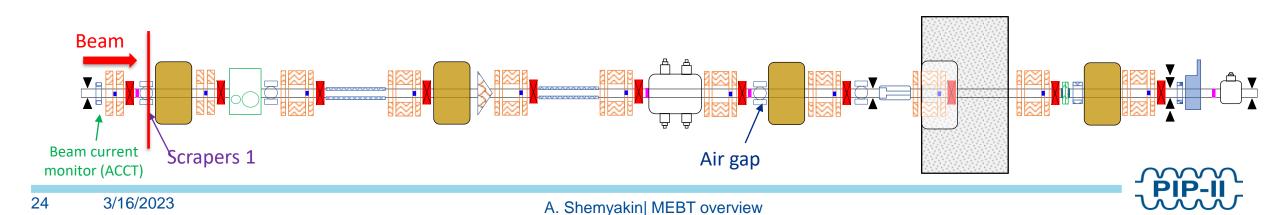




A. Shemyakin| MEBT overview

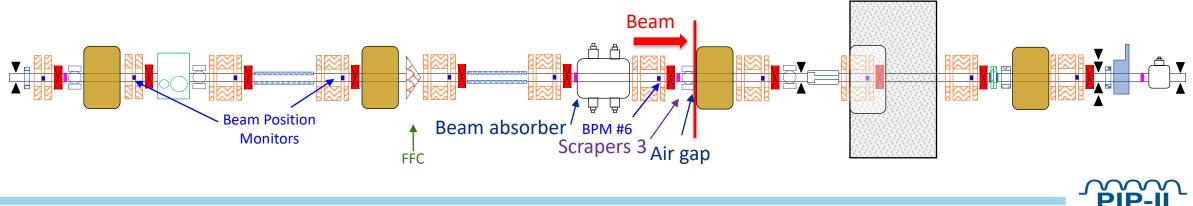
### **Beam modes**

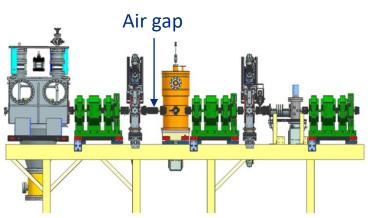
- Commissioning Plan (PIP-II DocDB# 5420) defines "beam modes", the beam parameters that would be allowed by MPS in different situations
  - MEBT will be using the same mode definitions


Table 6 2: Beam power in Watts for different beam modes and energy locations. The table is provided for reference only. The peak beam current within a pulse is 2 mA for all modes for the SRF linac (33, 177, and 800 MeV) and 5 mA for the front end (2.1 MeV, marked \*).

|      | Pulse length | Pulse rep. | Beam Energy (MeV)   |      |       |       |  |  |  |
|------|--------------|------------|---------------------|------|-------|-------|--|--|--|
|      | (μs)         | rate (Hz)  | 2.1                 | 33   | 177   | 800   |  |  |  |
| BM 1 | 10           | 1          | <mark>0.1*</mark>   | 0.66 | 3.54  | 16    |  |  |  |
| BM 2 | 10           | 20         | <mark>2.1*</mark>   | 13.2 | 70.8  | 320   |  |  |  |
| BM 3 | 550          | 1          | <mark>5.8*</mark>   | 36.3 | 194.7 | 880   |  |  |  |
| BM 4 | 550          | 20         | <mark>116*</mark>   | 726  | 3894  | 17600 |  |  |  |
| BM 5 | CW           | -          | <mark>10500*</mark> | -    | -     | -     |  |  |  |

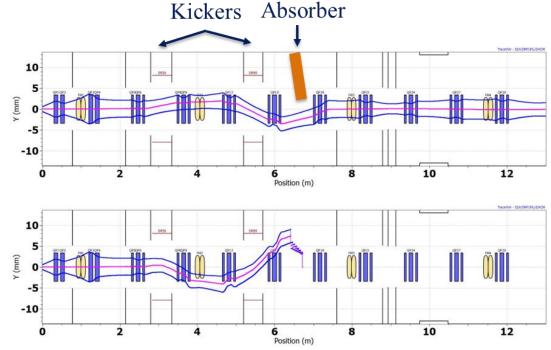



### 1<sup>st</sup> stage: RFQ beam commissioning

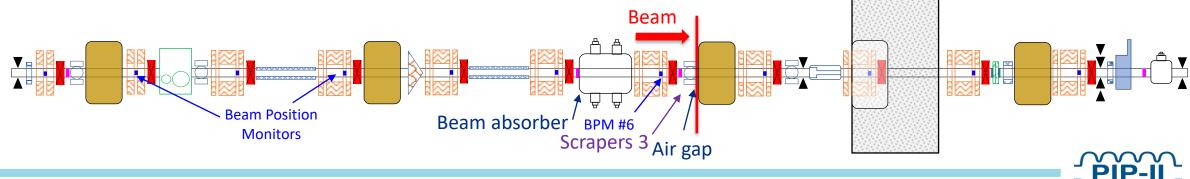

- First set of scrapers is closed; Mode 2 (10 µs x 20 Hz)
  - The beam is accelerated in RFQ. Observed by ACCT, BPM, Ring Pickup, scrapers.
  - Test MPS and controls
  - Tune transmission through RFQ; RFQ voltage calibration



# 2<sup>nd</sup> stage: low-power beam commissioning


- The 3<sup>rd</sup> set of scrapers is closed; Mode 2 (10 µs x 20 Hz)
  - All other scrapers are retracted.
- With kickers off
  - Beam is transported on axis to the Scrapers 3
    - All inputs to MPS are checked with the beam
    - Transverse optics is verified by measuring the response matrix (correctors + BPMs).
    - Envelope is measured with Wire Scanners.
    - The bunchers are phased and calibrated. Bunch length is measured with Fast Faraday Cup.



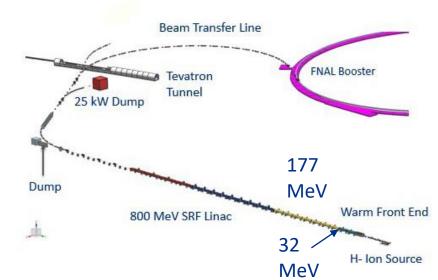



# 2<sup>nd</sup> stage: low-power beam commissioning with kickers

- Prepare trajectory for operation with kickers
  - Trajectory needs to be significantly perturbed with dipole correctors to pass the beam through narrow (13 mm) apertures of the kickers both with and without voltage at the kicker plates.
- Beam commissioning with kickers
  - Time with the pulse; phase with the bunches
- Verify kicker properties at 10 µs with BPMs
  - Deflection, pattern; estimation of extinction.



Rms vertical envelopes in PIP-II MEBT. Top – passing bunches, bottom- removed bunches. A. Pathak.




## 3<sup>rd</sup> stage: high-power beam commissioning

- Direct the beam to the absorber.
  - Scrapers 3 stay closed, and beam is interrupted if their current is too high. Kickers are off.
    - Such scenario was used at PIP2IT.
  - Increase the duty factor to 1.1%
  - If time allows, increase the duty factor, up to CW
- If the temporary 50 W beam dump is installed, will test the chopping system with the beam at 1.1% duty factor corresponding to Booster injection parameters
  - The next opportunity for that is when the beam reaches the BTL dump
- After MEBT commissioning, the air gap is removed
  - The portion of MEBT downstream of the air gap is beam commissioned together with HWR and SSR1

### **MEBT in PIP-II commissioning**

- Stages after MEBT commissioning
  - Diagnostics cart at 32 MeV (after SSR1)
  - Diagnostics cart at 177 MeV (after SSR2)
  - Full linac to the straight-ahead dump (800 MeV)
  - BTL absorber
  - Beam to Booster
- The MEBT provides additional knobs for initial commissioning at each stage
  - "Pencil" beam can be prepared by heavy scraping with all MEBT scrapers
  - Variations of the bunch structure





## Summary

- The present design of PIP-II MEBT has all components necessary for successful commissioning and operation of PIP-II
- The reports addresses the charge questions:
  - #2: Does the design support the various possible configurations of the beam line for beam commissioning?
  - #3: Have Lessons Learned from PIP2IT been taken into account and implemented (as deemed necessary)?
- We believe the answer to these questions is "yes".

