

Needs of the Intensity Frontier Experiments (excluding Dune)

Lisa Goodenough FNAL AI Infrastructure Planning Mini-workshop 6 April 2023

Mu2e

- Historically they have used Root TMVA in many places
- More recently: most uses of TMVA have migrated to TensorFlow training using Python outside of art - they have been running these workflows at NERSC
 - Use ROOT SOFIE to write inference code in C++ that they can call in our code.
 - Examples: hit classification; tracker pat-rec; calibration of tracker T-to-D; track quality estimation
 - Mostly simple dense-layer networks; experimenting with conformal NN for event classification

Mu2e

- In the future: They expect that new opportunities for AI/ML will arise as the experiment transitions to commissioning, operations and analysis.
 - No definite plans at this time.
 - Possibilities include:
 - More powerful AI/ML where is it used now.
 - Tagging events as background candidates (both signal-like and sideband events)
 - If trigger farm hardware is refreshed during the long shutdown (starting Jan 2027), they could consider GPU-rich options to support more AI/ML and algorithms that better exploit GPUs. Limiting factor will be physicists to develop algorithms.
 - Mu2e-II community is looking at AI in the trigger and for pattern recognition.
- Have used CPUs exclusively thus far and have no plans at this time for high volume, GPU-rich resources

Muon g-2

- Muon g-2 has no plans for using AI in any large-scale way in their operations or production workflows.
- They do not foresee any need for specific resources for AI.

NOvA

Currently have two different production workflows that use Al:

Standard Reconstruction:

- Runs a handful (5-10) lightweight networks, MobileNet-based CNNs and LSTMs
- These are typically run via the TensorFlow C++ interface, all on CPUs
- Even without accelerated inference, these networks make up a minority of the runtime for reconstruction
- Would likely not change this workflow regardless of new Al-focused resources since the time savings wouldn't justify the effort.

Cosmic Filtering:

- This workflow runs a larger ResNet18 CNN, and that inference task is the primary focus of the workflow.
- Currently running on ALCF's ThetaGPU machine so they can use GPU-accelerated inference.
- Use a local client-server setup (communicating via FIFO pipes) where 8 GPUs handle inference for 128 simultaneous ART jobs.
- Could conceivably move this workflow to AI-focused FNAL hardware, but it would hinge on being able to use the Balsam workflow management system on those machines.

NOvA

Cosmic Filtering Resource Usage

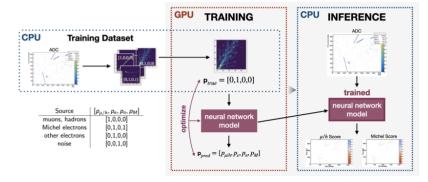
- Process is connected to the NOvA "freight train" workflow for prestaging several different datasets tape-by-tape
- If it all worked perfectly smoothly, it would run continuously (with some fractional duty factor)
- Cosmic dataset being processed is >1 PB too large to prestage and store somewhere all at once
- Also are filtering NUMI trigger files, which are numerous but minuscule
- Currently using 2-3k node-hours (1 node = 8 GPUs, 128 CPUs) per 6 months would use more if everything ran smoothly
- Once they are done with the back processing (this summer?) it will be much less as they transition to just keep-up processing of new files.

NOvA

Future Workflows:

- Exploring some future architectures (sparse, graph-based, multi-function networks),
 which could really benefit from future FNAL hardware investments.
 - Some of the people involved are already pursuing zmq messaging to communicate with a separate python-based inference process, even if all CPUs are on the same node.
 - It's not a big leap from there to instead communicate with a remote server using zmq.
 - The same folks are also involved in some LAr AI work, so there's potential for synergy of tools.

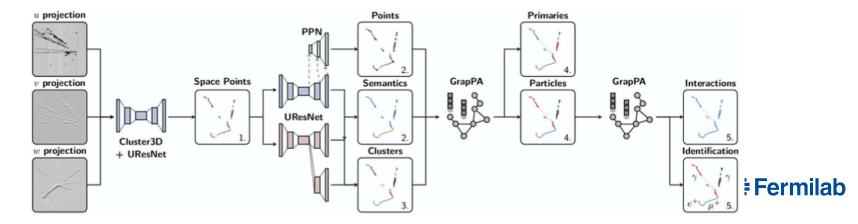
SBND


- ML-based tools from computer vision and pattern recognition are very useful for LArTPC experiments and research is actively ongoing
- SBND is starting to work on integration of ML-based tools
- Currently working on porting and adapting useful ML packages from other experiments
 - "Hit Classification with CNN" from DUNE
 - "Neutrino Interaction Classification with CVN" from DUNE
 - Additional workflows being investigated

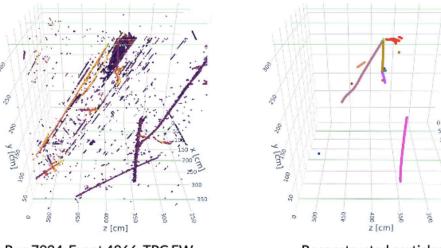
SBND

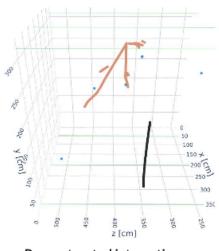
Workflow Example

- Hit Classification with CNN Workflow
 - Package lives in LArSoft
 - Task: Classify hits according to source of energy deposition and identify hits from Michel electrons, using only local information
 - Resources: CPU on FermiGrid, GPU on EAF @ Fermilab (NVIDIA Ampere A100, 20GB memory)
 - Unique tool comes with straightforward integration:
 - code runs in LArsoft, easy to add to the current production format ex.
 additional branches in a CAF file
 - Inference doesn't require GPUs easy to add to current workflow, with an API for freezed neural network
 - Supports analyzers on PID, complementary to Pandora


SBND

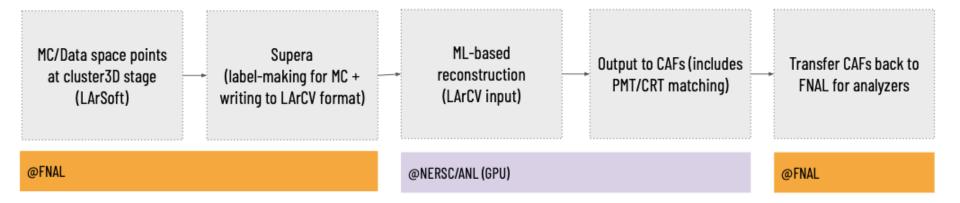
- SBND is working on ML-based tools that can be added on to the existing infrastructure, as well as novel methods.
- Want to plan things out in advance for an efficient pipeline later on they are thinking about this now!
 - Eager to learn from other experiments
 - ML in production chain is still a work in progress
 - resource requirements unknown at this time


ICARUS


- ML-based reconstruction chain
 - 3D space point building (T. Usher) + artifact removal + charge rescaling (Cluster3D + CNN: UResNet)
 - Voxel semantic classification, point identification (CNN: UResNet+PPN)
 - Dense clustering (DBSCAN + CNN: Graph-SPICE)
 - Particle aggregation, primary identification (**GNN**: GrapPA-Track/Shower)
 - Interaction aggregation, particle identification (**GNN**: GrapPA-Interaction)

ICARUS

- The ML reconstruction chain outputs high-level description of LArTPC images:
 - List of **interactions** (= slices): 1 per neutrino, 1 per cosmogenic particle and its daughters
 - ▶ For each interaction: vertex, list of particles
 - For each particle: set of charge deposition voxels, particle identification, primary identification, energy


Run 7924, Event 4966, TPC EW

Reconstructed particles

Reconstructed interactions

ICARUS

- ML Reconstruction Strategy Goals:
 - Share most of the pipeline for MC production & data processing with non-ML reconstruction chain
 - Convert LArSoft space points to LArCV (input to the reconstruction chain) and make labels, as part of stage1
 - Transfer LArCV files from FNAL to a GPU HPC cluster (NERSC or ANL)
 - Run reconstruction + flash matching/CRT matching on GPU HPC cluster

SBN Summary

- Two approaches are very different:
 - SBND is integrating the networks in LArSoft and executing them from there (on CPUs)
 - ICARUS exports information in dedicated files, transfers them offsite and runs on GPUs at HPC. Then they need to transfer back the results.
- May ultimately want the best of the two approaches:
 - a way to run any custom network from LArSoft (but without the overhead of integrating the network code)
 - and the option to run it either on CPU or GPU. So basically nuSONIC or a similar solution.

Summary for IF Experiments

My reading of information I was given:

- NOvA and SBN experiments will be drivers of AI needs in the future.
- NOvA is satisfied with current resources. Would likely do more with AI given the personnel to develop the code and workflows.
- SBN Experiments, ICARUS and SBND, are actively pushing AI usage but are unsure of needs at this time.
- Mu2e may do more with AI during and after the long shutdown starting in January of 2027.

April 6 2023