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J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84, 1307 (2012). 

• Oscillation experiments need accurate measurements of 
true neutrino energy (neutrino energy at initial neutrino 
nucleon interaction)

• Different processes contribute to the cross-section at 
different neutrino energies

4
= quasi-elastic = resonant pion production = deep inelastic scattering
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• Oscillation experiments need accurate measurements of 
true neutrino energy (neutrino energy at initial neutrino 
nucleon interaction)

• Different processes contribute to the cross-section at 
different neutrino energies

• Nuclear effects cause energy smearing and can modify final 
state particle kinematics

J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84, 1307 (2012). 

T. Golan, NuSTEC 2015

4
= quasi-elastic = resonant pion production = deep inelastic scattering
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• Massive statistics @ DUNE ND ~100 million 
events/year on argon

• Complex region of phase space with multiple 
interaction channels and their transition 
regions: QE → RES → DIS

• Challenge for neutrino interaction models, 
systematics limited!
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MINERvA LE and ME datasets 
(RES, DIS)
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• DUNE will have a large overlap with 
MINERvA LE and ME datasets 
(RES, DIS)

• Understanding nuclear effects and 
their A-dependence is one of 
MINERvA’s primary goals → useful 
for interactions on argon

• Measurements of interaction cross-
sections at MINERvA can help to 
refine neutrino interaction 
simulations for DUNE

6
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MINERvA Detector
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𝝂 Beam

p

𝝁
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Passive Target Region
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𝝂 Beam
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Hydrocarbon

Can measure nuclear dependence!
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MINERvA’s Latest Measurements Highlights

• Flux constraint using (anti)neutrino-electron scattering and inverse 
muon decay

• A-dependence
• Neutrino CCQE-like
• Neutrino CC1𝜋'

• Antineutrino CCQE on hydrogen 



Cross-Section Measurement on a Particular Nucleus
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Selected 
events

Background
prediction

Differential cross-
section in bin 𝜶 for 
a given nucleus

Unfolding
matrix

Efficiency Integrated flux 
times the 
number of 
nucleons

Bin width 
normalization

• 𝑗 represents the reconstructed bin
• 𝛼 represents the true bin
• 𝑥 is the quantity we measure
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MINERvA’s Latest Measurements Highlights

• ME flux constraint using (anti)neutrino-electron scattering and 
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• A-dependence
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• Antineutrino CCQE on hydrogen 
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ECAL HCALActive Tracker
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𝜈

𝜈
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• Flux is not known precisely → in-situ constraints

�̅�) + 𝑒 → �̅�) + 𝑒

𝜈) + 𝑒 → 𝜈) + 𝑒 Standard candle for flux 
Cross-section precisely predicted by electroweak theory
Normalization constraint (integrated flux) 

(Anti)Neutrino-Electron 
Elastic Scattering

Inverse Muon Decay
Threshold of ≈ 11 GeV with very forward going muon
Can constrain the high-energy part of the flux

NuMI beam

15
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• Flux uncertainty in 𝝂 mode
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• Flux uncertainty in 𝝂 mode
reduced from 7.6% to 3.3% 

• In "𝝂 mode from 7.8% to 4.7%

• Used in MINERvA analyses!
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CCQE

What the detector sees vs what happens (2p2h/RES... + FSI)
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2D cross-section vs muon transverse momentum and longitudinal momentum
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MINERvA tune to GENIE underpredicts the data on iron 

2D cross-section vs muon transverse momentum and longitudinal momentum

19

J. Kleykamp et al. Phys. Rev. Lett. 130, 161801, 2023.
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MINERvA tune to GENIE underpredicts the data on iron 

2D cross-section vs muon transverse momentum and longitudinal momentum

Zoom-in to the highest-statistics bin of muon 
longitudinal momentum and look at different materials

19

J. Kleykamp et al. Phys. Rev. Lett. 130, 161801, 2023.

https://arxiv.org/abs/2301.02272
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Model agrees with the 
data fairly well (tuned 
to scintillator)
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J. Kleykamp et al. Phys. Rev. Lett. 130, 161801, 2023.

Hydrocarbon Carbon Water

Iron Lead
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Model agrees with the 
data fairly well (tuned 
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Underprediction increases with A 
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Model agrees with the 
data fairly well (tuned 
to scintillator)

Underprediction increases with A 
20

→ 2D ratios to cancel 
systematics (flux, detector 
effects)

J. Kleykamp et al. Phys. Rev. Lett. 130, 161801, 2023.

Hydrocarbon Carbon Water

Iron Lead

https://arxiv.org/abs/2301.02272


MINERvA’s Latest Measurements Highlights

• ME flux constraint using (anti)neutrino-electron scattering and 
inverse muon decay

• A-dependence
• Neutrino CCQE-like
• Neutrino CC1𝝅'

• Antineutrino CCQE on hydrogen 
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How do we identify a charged pion in MINERvA?

1. dE/dx

2. Michel tag
𝜋! →𝜇! → 𝑒"
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How do we identify a charged pion in MINERvA?

1. dE/dx

2. Michel electron tag
𝜋! → 𝜇! → 𝑒"

MeV

10

0

MeV

10

0

~4.4 𝜇s

RES-like

22

A. Bercellie et al. arXiv:2209.07852 [hep-ex].

Pion fit
Proton fit

https://arxiv.org/abs/2209.07852
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How do we identify a charged pion in MINERvA?

1. dE/dx

2. Michel electron tag
𝜋! → 𝜇! → 𝑒"

MeV

10

0

MeV

10

0

~4.4 𝜇s

RES-like
Dominant channel for

22

A. Bercellie et al. arXiv:2209.07852 [hep-ex].

Pion fit
Proton fit
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Pion kinetic energy cross-section ratio

23

A. Bercellie et al. arXiv:2209.07852 [hep-ex].
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Iron Lead
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Pion kinetic energy cross-section ratio Base CV

Carbon and water ratios 
consistent with unity (stats. 
limited)
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Model overpredicts pions in 
heavy nuclei
• Opposite trend to CCQE-like 

discrepancy
• Pion absorption as a source of 

mismodelling?

Pion kinetic energy cross-section ratio Base CV

Carbon and water ratios 
consistent with unity (stats. 
limited)
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MINERvA’s Latest Measurements Highlights

• ME flux constraint using (anti)neutrino-electron scattering and 
inverse muon decay

• A-dependence
• Neutrino CCQE-like
• Neutrino CC1𝜋'

• Antineutrino CCQE on hydrogen 



�̅�! CC 0𝜋 on Hydrogen  
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• Measurement on a free nucleon (no nuclear effects!) – hydrogen in the CH tracker  �̅�#𝐻 → 𝜇!𝑛

Neutron undergoes secondary interactions to produce a visible proton

25

T. Cai et al. Nature, 614, 48-53, 2023.

https://www.nature.com/articles/s41586-022-05478-3


�̅�! CC 0𝜋 on Hydrogen  

July 3rd, 2023 Anežka Klustová

• Measurement on a free nucleon (no nuclear effects!) – hydrogen in the CH tracker  �̅�#𝐻 → 𝜇!𝑛

• Neutron deviation from scattering on a free nucleon vs carbon (transverse kinematic imbalance)

26

T. Cai et al. Nature, 614, 48-53, 2023.

https://www.nature.com/articles/s41586-022-05478-3


�̅�! CC 0𝜋 on Hydrogen  

July 3rd, 2023 Anežka Klustová

• Measurement on a free nucleon (no nuclear effects!) – hydrogen in the CH tracker  �̅�#𝐻 → 𝜇!𝑛

• Neutron deviation from scattering on a free nucleon vs carbon (transverse kinematic imbalance)
• Neutron deviation can be captured using angular variables

Centred (H) vs spread (C)

26

T. Cai et al. Nature, 614, 48-53, 2023.

https://www.nature.com/articles/s41586-022-05478-3


�̅�! CC 0𝜋 on Hydrogen  

July 3rd, 2023 Anežka Klustová

• Measurement on a free nucleon (no nuclear effects!) – hydrogen in the CH tracker  �̅�#𝐻 → 𝜇!𝑛

• Neutron deviation from scattering on a free nucleon vs carbon (transverse kinematic imbalance)
• Neutron deviation can be captured using angular variables

Centred (H) vs spread (C)

Tune in 2D and subtract carbon background using sidebands

26

T. Cai et al. Nature, 614, 48-53, 2023.
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Hydrogen cross-section

More than 5000 hydrogen events!
27
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Hydrogen cross-section

More than 5000 hydrogen events!

Fit cross-section to an 
Z-expansion axial form 
factor with BBBA2005 
vector form factors 

Axial form factor
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Hydrogen cross-section

More than 5000 hydrogen events!

Axial form factor

Fit cross-section to an 
Z-expansion axial form 
factor with BBBA2005 
vector form factors 

27
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And More!
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pT: transverse momentum
p||: longitudinal momentum
∑𝑇!: sum of the kinetic energy of all protons

FSI?

Simultaneous muon and hadron 3-dimension 
cross-sections for 𝝂 quasielastic-like 
scattering on hydrocarbon

28

D. Ruterbories et al. Phys. Rev. Lett. 129, 021803, 2022.

https://arxiv.org/abs/2203.08022


Simultaneous muon and hadron 3-dimension 
cross-sections for 𝝂 quasielastic-like 
scattering on hydrocarbon

And More!
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pT: transverse momentum
p||: longitudinal momentum
∑𝑇!: sum of the kinetic energy of all protons

FSI?

A-dependence in coherent pion production
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M. A. Ramírez et al. arXiv:2210.01285 [hep-ex].

https://arxiv.org/abs/2210.01285


Simultaneous muon and hadron 3-dimension 
cross-sections for 𝝂 quasielastic-like 
scattering on hydrocarbon

And More!
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pT: transverse momentum
p||: longitudinal momentum
∑𝑇!: sum of the kinetic energy of all protons

FSI?

A-dependence in coherent pion production

High-statistics antineutrino 
quasielastic-like scattering on a 
hydrocarbon target 

MINERvA Tune v1
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A. Bashyal et al. arXiv:2211.10402 [hep-ex].

https://arxiv.org/abs/2211.10402


Coming Soon
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• 3D CCQE vs transverse kinematic imbalance variables
• Neutron tagging, interaction with 2+ neutrons
• Electron neutrinos and antineutrinos
• Low recoil
• More charged pions
• Interactions on helium
• Inclusive, deep inelastic and shallow inelastic scattering

32
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• 3D CCQE vs transverse kinematic imbalance variables
• Neutron tagging, interaction with 2+ neutrons
• Electron neutrinos and antineutrinos
• Low recoil
• More charged pions
• Interactions on helium
• Inclusive, deep inelastic and shallow inelastic scattering

Data preservation product to ensure more physics can 
be extracted from the data going into the DUNE era!

32

Analysis framework and data preservation tuples
Snowmass 2021 Contributed Paper

@MinervaExpt

https://arxiv.org/abs/2009.04548v2


UK Contribution
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• Oxford 2016 (Lu, Wark, Weber), Imperial 2020 (Waldron, Wascko), Warwick 2021 (Boyd, Lu), 
QMUL 2022 (Waldron)

• Funding sources: ERF/UKRI, Marie Skłodowska-Curie/EU, University fundings
• Activities: Data analysis (neutrino interactions, BSM searches), data production and 

preservation 
• Leadership roles: Analysis Coordinator 2020, Executive Committee Member 2020, Speakers 

Committee Member 2019, Neutrino Interaction Working Group Convener 2019, Reconstruction 
Working Group Convener 2018.

• Publications with leading contributions: Phys. Rev. D 102, 072007 (2020), Phys. Rev. D 
101, 092001 (2020), and Phys. Rev. Lett. 121, 022504 (2018).

From X. Lu:



Conclusions
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MINERvA planes 
repurposed for DUNE 2x2



Back-up



MINERvA Detector
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𝝂 Beam

p

𝝁

3 orientations of scintillator 
planes give unambiguous 
3D track reconstruction.

Read out using WLS fibres and 
PMTs: timing resolution better than 
~5 ns to distinguish overlapping 
events within a single spill (< 10 µs).

MINOS spectrometer: 
muon momentum and 
charge.

3.3 cm

1.
7 

cm

Front View

Triangular strips arranged 
to give a better position 
resolution. 
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Passive Target Region

Hydrocarbon

6 different nuclei 
in 7 different targets

Fe / Pb
323 kg / 264 kg

Pb / Fe
266 kg / 323 kg

C / Fe / Pb
166 kg / 169 kg / 121 kg

Pb
228 kg

Fe / Pb
161 kg / 135 kg

Distilled water
0.39 t

Helium Target
0.25 t

1

2 3
4

5

125 cm



• Plastic scintillator sensitive to small energy 
deposits

• Hadronic recoils measured using calorimetry
• Tracking threshold (KE) for proton ~ 100 MeV
• Neutrons can deposit visible energies (albeit 

small) after recoil inside scintillator

July 3rd, 2023 Anežka Klustová 68

Sensitivities to Final States

Tracker ECAL HCAL

proton, KE

𝜋!, KE
Neutron ~ 0

𝜋", total E



Flux Simulation & Uncertainties
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Neutrino Energy (GeV)

ME 𝝂𝝁 Hadron Production Uncertainties

L. Aliaga et al. Phys. Rev. D 94, 092005 (2016).
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ME 𝝂𝝁 Focusing Uncertainties 
B. Messerly

Neutrino Energy (GeV)

Small simulation inaccuracies have 
a big impact around the focusing 
peak!

https://arxiv.org/abs/1607.00704


• Using Bayes’ theorem

• A-priori flux uncertainty estimated using multiverse method
• Ensemble of flux predictions by varying flux parameters within 

their uncertainties (hadron production, beam alignment)

𝑃 𝑀 𝑁$%→$%  new prediction (posterior) probability of the flux  
 prediction given the electron spectra 

  measurement)

𝑃 𝑀  flux prediction in each universe/model (prior)

𝑃(𝑁$%→'%|𝑀) likelihood of the electron spectra measurement 
 given the a-priori model

Flux Constraint Procedure

July 3rd, 2023 Anežka Klustová



• Likelihood of the measurement for each universe

• Predictions from universes with poor data agreement are weighted 
down → reduces uncertainty (spread of the universes)

• In neutrino mode, the neutrino flux uncertainty is reduced 
from 7.6% to 3.9% (integrated flux over the energy range)

𝑁 vector containing the bin content of the measured energy
 spectrum of given process
𝑀 same as 𝑁 but for the MC prediction

Σ(  covariance matrix of the uncertainties of 𝑁 

𝐾 number of the bins of the spectrum
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Neutrino Flux Constraint
E. Valencia et al. Phys. Rev. D 100, 092001, 2019.
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https://arxiv.org/abs/1906.00111
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MINERvA Tune v1

• GENIE 2.12.6 
• QE – Llewellyn-Smith formalism with the vector form 

factors modeled using the BBBA05 model
• RES – Rein-Sehgal model
• DIS – a leading order model with the Bodek-Yang 

prescription
• Nuclear environment – relativistic Fermi gas with 

additional Bodek-Ritchie high momentum tail
• FSI – INTRANUKE-hA

• MINERvA modifications based on our data
• Added RPA to better simulate QE
• Added + enhanced Valencia 2p2h – increased by 50% 

over the nominal prediction (integrated over all phase 
space) based on low recoil fit

• Non-resonant pion production reduced to 43%

P. A. Rodrigues et al. Phys. Rev. Lett. 116, 071802 (2016)
P. Rodrigues, C. Wilkinson, and K. McFarland, Eur. Phys. J. C76, 474 (2016).

https://arxiv.org/abs/1511.05944
https://arxiv.org/abs/1601.01888
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MINERvA Tunes



Neutrino-Nucleus Interactions
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• Inseparable nucleon and nuclear effects unless scattering off 
of a free nucleon

• Initial states: Fermi motion, short-range correlation, binding 
energy, etc.

• Final state interactions: elastic, inelastic, charge-exchange, 
pion production, pion absorption, etc.

• Current and future neutrino oscillation experiments use 
relatively heavy nuclei: C, CH, H2O, Ar

• Important to study nuclear dependence



Nuclear Environment
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• Relativistic Fermi Gas (RFG) vs Local Fermi Fas (LFG) 
vs Spectral Function (SF)

• RFG: non-interaction fermions in a potential well with 
fixed Fermi momentum

•  GENIE RFG includes an additional tail
• LFG: Fermi gas with location dependent Fermi 

momentum
• SF: Nuclear shell model

Initial state momentum distribution



Nuclear Dependence with 𝜈!CC 0𝜋
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Cross-Section Ratios to CH

Ratios provide systematics 
cancellations (flux, detector 
effects)

Low vs high 𝑝$ (non-QE vs QE-like)
Overall QE-like A-scaling underpredicted
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How Do We Produce Single Pions?

From Kevin McFarland

• Many competing production mechanisms

p p

Diffractive
(on hydrogen)

Coherent 
inelastic

Resonant 
pion production

Non-resonant 
pion production

Dominant

Significant

Sub-
leading

Interference 
may be large 
effect

Interference at 
low Q2 on 
hydrogen

Kevin McFarland



Nuclear Dependence with 𝜈!CC 1𝜋

July 3rd, 2023 Anežka Klustová

Pion kinetic energy cross-section Base CV

Model overpredicts pions in 
heavy nuclei
• Opposite trend to CCQE-like 

discrepancy
• Pion absorption as a source of 

mismodelling?



�̅�! CC 0𝜋 on Hydrogen 
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T. Cai et al. Nature, 614, 48-53, 2023.

Non-QE Validation

Non-QE Fit

Non-QE & Mesons

QE Validation

QE Fit

CCE Signal
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https://www.nature.com/articles/s41586-022-05478-3


Z Expansion
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T. Cai et al. Nature, 614, 48-53, 2023.

Maps the 1D variable 𝑡 = −𝑄) onto a unit circle bounded by 𝑡*+, = 9𝑚-
) , the threshold 

of three-pion production allowed by the axial current

https://www.nature.com/articles/s41586-022-05478-3
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Coherent Pion Production

• Occurs in both CC and NC

• All nucleons react in phase, no nuclear break-up with nuclear recoil 
undetected producing forward lepton and forward pion

• Pion scatters coherently off the nucleus

• Not well understood
• W/Z exchange in the presence of a nucleus, boson fluctuates to a 𝜋

meson
• Coherent addition of all neutrino-nucleon interactions, delta resonance is 

the main process contributing

• Rein-Sehgal Model: Ann. Phys. 133, 79-153 (1981)
• Relates inelastic 𝜈𝐴 → 𝑙𝜋𝐴 to elastic 𝜈𝐴 → 𝑙𝐴, assumes 𝜈 and 𝑙 are parallel 

for 𝑄! = 0, neglects lepton mass
• Pion-nucleus scattering modelled using pion-nucleon data

• Berger-Sehgal: Phys.Rev. D79, 053003 (2009).
• Uses 𝜋-carbon data for the 𝜋𝐴 → 𝜋𝐴 scattering, includes lepton mass

𝑡 = |(𝑝$−𝑝. − 𝑝-))|

Coherence depends on the magnitude 
of the four-momentum transfer to the 
nucleus: 

More info:
Alejandro Ramírez Delgado, W&C 
Seminar, June 10th, 2022 



Behind The Scenes: ‘Daisy’ Tracker
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• NuMI beam pointed downwards (3.34 deg) wrt the detector → transverse 
center of the beam changes as a function of the longitudinal position

• Difference in the flux shape + normalization in the nuclear targets 
compared to the tracker (problem for cross-section ratios)

• ‘Daisy’ concept: Match the target flux by taking a linear combination of 
the tracker fluxes extracted in the 12 “daisy” petal bins


