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My thesis analysis: WARWICK
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Optimisation of the Search for CP-symmetry Violation at the Deep Underground
Neutrino Experiment

* Completed at the University of Warwick
(with John Marshall, Andy Chappell and Maria Brigida Brunetti)

* Example of the broader reconstruction — analysis continuum
approach taken by the Pandora team

[ Reconstruction ] — [ Analysis ]

* Helps us to identify (and make) the reconstruction improvements
that matter to physics analyses
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A Pandora CP-violation Analysis
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Pandora

Pandora Pattern Particle . Neutrino Energy CP-Violation
ez ® . ° ve/v” Selectlon ° [ e, 0 e 0
Recognition Characterisation Estimation Sensitivities
A multi-algorithm approach:
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The v, /v, Selection
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Estimating DUNE’s Sensitivity to CP-Violation

Pandora Pattern Particle v, /v, Selection Neutrino Energy CP-Violation
Recognition Characterisation e/ H Estimation Sensitivities
To estimate our sensitivity to CP-violation if 6.p = x: 5

1) Simulate the neutrino interactions that DUNE would see for §.p = x
2) Selectv,,v,,V,,V, interactions and create reconstructed energy spectra -

3) Compare to what we would expect if §.p = 0, (CP-conservation)
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4) Compute the confidence to which CP-conservation can be rejected 0
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Initial Performance
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What'’s Limiting the Performance?
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* Electron/photon separation in the electron-like BDT isn’t the best...
* Broad signal classification distribution = limits efficiency
e Background contamination = NC events reduce significance of deviations

= limits sensitivity
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Electrons and Photons in LArTPCs

BNB Simulation BNB Simulation
Electron Photon

§ 0'35 = |:| Signal Electron Showers

* Electron and photon-induced showers look similar in LArTPCs 5 ozb —— Backgound Shovers
. . §. 0.2:—
e There are two main differences: £ F

0.151— .
 Photons are neutral = we will see a gap -
0.1—
* Photon showers begin with a electron-positron pair = 0_055_
will have twice the dE/dx of an electron T
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Electrons and Photons in LArTPCs

+Cb

e
. : : : +
Thinking back to the reconstruction — analysis continuum... ¥
be_
[ Reconstruction ] — [ Analysis ]
* FEle To get the ‘gap’ and correct initial dE/dXx...
* Th
. We need to be reconstructing the initial shower region correctly!
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9 Isobel Mawby | DUNE UK Meeting, Bristol, 4t July _)LAAV_ %%%%?Sff§-




What’s going wrong?

Electrons Photons

1) Can overlap with other particles 1) Can immediately convert

2) Can split at the point where the shower begins 2) Can merge in contaminants
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Let’s fix it!

* The multi-algorithm approach allows one to develop
tailored algorithms to solve specific problems

* | created an algorithm with the workflow:

Decide whether the

Find the connectin
g pathway belongs to

pathway of the _
. the shower and is
shower to the neutrino ]
electron-like
vertex

split
electron
shower

D

yes

no
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merged

Merge the pathway

Remove the pathway
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The Connection Pathway BDT

* Does a given connection pathway ‘belong to the shower and is electron-like’?

Bshower
hits \
\ \
raw hits raw hits raw hits rav'v\hits
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_g vertex \l é vertex N\, P .g z:;j;t;t:ii? \ g H
drift coordinate drift coordinate drift coordinate drift coordinate
Initial region: Pathway region: Shower region: Ambiguous region:
- Is there a gap? - Is it straight? - Does it look sensible? - Does the shower
- lIs it short? - Does it look to come contribute to the
from the vertex? energy of shared hits?
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Results

=
J C
* The connection pathway BDT gives us lots of Ve
information on whether the shower is an s
electron -
— add the connection pathway BDT 51—
variables to the electron-like BDT JF
* With the improved reconstruction and 3
electron-like BDT we saw substantial gains!! =
21
. . . N Improved Performance (Cheated Neutrino Vertex)
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But wait... systematics?

W 57 Median sensitivity
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e Qur sensitivity plots have used the MC simulation... but g

what if it’s wrong? (it definitely is)
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* Flux, cross section and detector systematics were
implemented into our simulated data predictions and | - 5
energy spectra fitting
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* My improvements survived! ’
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Conclusions and Future Work

Determining whether neutrino oscillations violate CP is one of the future aims of neutrino physics

| have created a Pandora-based CP-violation analysis at DUNE

Have illustrated how we can optimise the Pandora reconstruction with respect to such an analysis

Am now continuing this work (as a postdoc at Lancaster) with Maria Brigida Brunetti (Warwick)

Currently looking at the sensitivity gains achieved with recent Pandora developments

Plans to develop Maria Brigida’s shower reclustering algorithm to the CPV analysis

Plans to overhaul the selection procedure i.e. machine-learning, including more event info etc..

More reconstruction developments...

Thank you for listening!
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