Calibration update

Rhiannon Jones, Praveen Kumar, Vitaly Kudryavtsev University of Sheffield DUNE UK Project Meeting, July 4th 2023

Introduction

The Sheffield group is currently involved in a number of calibration tasks,

- Neutral pion studies for electromagnetic shower calibration [Praveen Kumar]
 - DUNE FD, cosmics
- Stopping muon calibration [Praveen Kumar]
 - DUNE FD, cosmics
- Absolute energy scale calibration [Rhiannon Jones]
 - DUNE FD, cosmics
 - ProtoDUNE SP (HD pending), beam & cosmics
- Collaborative efforts across DUNE working groups and consortia [Calibration WG]

I will run through a *brief* summary of each.

Neutral pions

Overview of the study

- Studied cosmic muon-induced neutral pions in the HD DUNE FD module
 - Assessed reconstruction capabilities between the neutrino-oriented Pandora reconstruction chain and the cosmic-oriented reconstruction chain
 - He found that the neutrino-oriented reconstruction fared better than the track-oriented cosmic chain
- Sample contents and selection
 - ~1.5 million simulated cosmic muons (104 days)
 - Events with at least one $\pi^0 \rightarrow 2\gamma$ (truth level)
 - Highest energy pair of showers taken in events with ≥ 2 reconstructed showers
 - Must be >100 hits in a shower
 - Opening angle between showers must be >20°

Opening angle [degree]

DUNE collaboration meeting, May 2023

Praveen Kumar

3

iannon Jones Cosmic-ray muon calibration DUNE UK, July 2

 $C = 1 - \cos \theta$

Neutral pions

Results

- Following the selection there are 156 π^0 s
 - Corresponds to ~1.5/day
- The π^0 invariant mass, *W*, is calculated,

 $W = \sqrt{2E_1E_2\left(1-\cos heta
ight)}$

- Extract W = $135 \pm 54 \text{ MeV/c}^2$
- There is no bias on this measurement, however the statistics are low and the resolution is poor
- Truth-level quantities are still being used, will be interesting to assess the fully-reconstructed case

Overview of the study

- Replicate ProtoDUNE and MicroBooNE recombination (Modified Box model) calibration method using stopping muons in the HD DUNE FD module
 - Challenge: very few stopping muons ~80/day
 - Statistics mean we cannot construct (good) charge deposition maps for dQ/dx calibration
 - \circ Skip straight to dE/dx, extract C_{Cal}

$$ig(rac{dE}{dx}ig)_{ ext{Cal}} = rac{\expig(rac{dQ/dx}{C_{ ext{Cal}}}\cdotrac{eta W_{ ext{ion}}}{
ho\epsilon}ig) - lpha}{eta/
ho\epsilon}$$

dQ/dxCharge depositions [ADC/cm] = $C_{_{Cal}}$ Calibration constant [ADC/e⁻] $C_{Cal, nom}$ 5 x 10⁻³ [ADC/e⁻] = 23.6 x10⁻⁶ [MeV/electron] W_{ion} 0.5 [kV/cm] (electric field strength) 3 = 1.38 [g/cm³] at 124.106 kPa = ρ 0.212 [(kV/cm)(g/cm³)/MeV] β = 0.93 α =

Stopping muons

C_{Cal} extraction

Inject a range of C_{Cal} values & extract dE/dx vs residual range (RR) [/KE]. Slice in the MIP region (KE 250-450 MeV) Extract dE/dx_{MPV} per slice and calculate χ^2 across the MIP region for each C_{Cal} dE/dx vs RR [/KE] distribution.

 $C_{Cal} = (5.319 \pm 0.003) imes 10^{-3} \; [ext{ADC}/e^-]$

Stopping muons

Results

Rhiannon Jones Cosmic-ray muon calibration DUNE UK, July 2023

A good fit in the MIP region, need to tune other parameters to improve lower KE/RR region.

Rhiannon Jones

Absolute energy scale at the DUNE HD FD

- Initially looked at through-going cosmic-ray muons at the DUNE FD
- The calibration procedure looked a little something like this

Select reconstructed muons with the following criteria:

- **PFPrimary** to maximise primary purity
- $L_{Reco} > 2 m$ to maximise muon purity
- $\circ \quad N_{\delta}/L_{Reco} > 17 \times 10^{-3} \text{ cm}^{-1} \text{ to minimise energy-dependence}$

Absolute energy scale at the DUNE HD FD

- Initially looked at through-going cosmic-ray muons at the DUNE FD
- The calibration procedure looked a little something like this

Absolute energy scale in ProtoDUNE SP

I have been looking at applying the DUNE FD calibration procedure on ProtoDUNE muons.

- 1 GeV ProtoDUNE-SP beam particles ~30k muons
 - Large fraction of these muons come from the halo, skewing the average energy up to ~9 GeV
- 7 GeV ProtoDUNE-SP beam particles ~100k muons
 - Halo contributions skew the average energy to ~6 GeV
- Cosmics ~8M muons

So far it's all MC only, but the wheels are in motion to apply this effort to PD-SP data.

Absolute energy scale in ProtoDUNE SP

- Implemented **Viktor's** DUNE FD electron lifetime calculation using the ProtoDUNE **cosmics**
 - Used to correct the dQ/dx using the FD approach
 - Not the same as the ProtoDUNE extraction
- The energy scale is then calculated from reconstructed charge depositions in the 1 & 7 GeV (halo-dominated) beam samples
- Currently, only a single systematic is considered to account for the energy dependence of dQ/dx
- The impact of space charge is currently being investigated no correction implemented currently

Cosmic muons

Absolute energy scale in ProtoDUNE SP

- Implemented **Viktor's** DUNE FD electron lifetime calculation using the ProtoDUNE **cosmics**
 - \circ $\,$ $\,$ Used to correct the dQ/dx using the FD approach
 - Not the same as the ProtoDUNE extraction
- The energy scale is then calculated from reconstructed charge depositions in the 1 & 7 GeV (halo-dominated) beam samples
- Currently, only a single systematic is considered to account for the energy dependence of dQ/dx
- The impact of space charge is currently being investigated no correction implemented currently

8.91 GeV beam muons

Absolute energy scale in ProtoDUNE SP

- Implemented **Viktor's** DUNE FD electron lifetime calculation using the ProtoDUNE **cosmics**
 - \circ $\,$ $\,$ Used to correct the dQ/dx using the FD approach
 - Not the same as the ProtoDUNE extraction
- The energy scale is then calculated from reconstructed charge depositions in the 1 & 7 GeV (halo-dominated) beam samples
- Currently, only a single systematic is considered to account for the energy dependence of dQ/dx
- The impact of space charge is currently being investigated no correction implemented currently

5.78 GeV beam muons

Calibration working group

Current areas of focus

- Cosmic rays & muons for
 - Electron lifetime (HD & VD)
 - Energy scale (HD, VD & PD)
 - Stopping muons/particles (HD, VD & PD)
 - $\sim~~\pi^0$ and EM shower calibrations (HD & VD)
- Neutron calibration
 - ARTIE-II
 - Low-energy ML classification, BLIPS
- Vertical drift calibration
 - Electron lifetime
 - Absolute energy scale
- Collaboration with CALCI

Plans

- *Very* preliminary: working on a plan for a few publications, possibilities include,
 - Cosmic-ray muon DUNE FD calibration and/or
 - Calibration scope for DUNE FD phase I
- Continue checking in with CALCI & ProtoDUNE DRA
- Extend liaisons to other working groups
 - VD
 - **ND**
 - TPC electronics
 - Physics analysis groups
 - o ...

Thank you!

Summary and next steps

Summary,

- Neutral pions from cosmic-ray muons are difficult to use for EM shower calibration
- Laid out a procedure for understanding the status of the shower reconstruction
- This can now be built upon as we aim to improve our electromagnetic shower reconstruction capabilities

Next steps for this work include,

- Construct a fully-reconstructed selection of the neutral pions
- Defining a targeted reconstruction chain for the environment we are dealing with
 - Muon-induced neutral pions, no neutrino vertex, possibility of high multiplicities of electromagnetic showers

Stopping muons

Summary and next steps

Summary,

17

- Good progress but there are limitations
 - Other parameters in the Modified Box recombination model need to be known
 - Low statistics not much we can do!

Next steps for this work include,

- Apply the calibration to charged pions to see whether it can reproduce their dE/dx dependence on the range and energy of a pion.
- Try a method that can remove the dependence on α & β

Praveen Kumar

Next steps

- Run the method on ProtoDUNE data
 - After some final analysis tweaks (inc. SCE correction)
- Validate this absolute energy scale method using the standard stopping muon calibration procedure applied to
 - A-C-crossing muons in ProtoDUNE
 - FD muons (extending Praveen's work)
 - How well does Mod-Box calibration match absolute calibration?
- Turn attention to other particle types
 - Look at existing measurements
 - What can we do with external data?

1 GeV beam muons, ProtoDUNE-SP, truth

Statistic	Rate / 291.8 Days	$\%$ Long TPC μ
Events	82,330	-
TPC μ	$32,\!489$	133.11~%
Primary TPC μ	$32,\!476$	133.05~%
Long TPC μ	24,408	$100 \ \%$
Crosses top or bottom	3380	13.848 %
Crosses top and bottom	0	0 %
Crosses front or back	$23,\!946$	98.107~%
Crosses front and back	12,097	49.562~%
Crosses 1 APA or CPA	1514	6.2029~%
Crosses ≥ 2 APA or CPA	0	0 %
Stopping	8496	34.808~%
Exiting	15,912	65.192~%

7 GeV beam muons, ProtoDUNE-SP, truth

Statistic	Rate / 223.1 Days	$\%$ Long TPC μ
Events	62,980	-
TPC μ	106,078	131.92~%
Primary TPC μ	105,925	131.73~%
Long TPC μ	80,408	100~%
Crosses top or bottom	1116	1.3879 %
Crosses top and bottom	0	0 %
Crosses front or back	71,797	89.291~%
Crosses front and back	40,004	49.751~%
Crosses 1 APA or CPA	10,937	13.602~%
Crosses ≥ 2 APA or CPA	0	0 %
Stopping	18,516	23.028~%
Exiting	61,892	76.972~%

Cosmics, ProtoDUNE-SP, truth

Statistic	Rate / 291.8 Days	$\%$ Long TPC μ
Events	82,330	-
TPC μ	7,709,038	100~%
Primary TPC μ	7,709,038	$100 \ \%$
Long TPC μ	7,708,782	100~%
Crosses top or bottom	6,340,934	82.256 %
Crosses top and bottom	1,070,659	13.889~%
Crosses front or back	$3,\!151,\!080$	40.876~%
Crosses front and back	74,610	0.96786~%
Crosses 1 APA or CPA	$3,\!493,\!602$	45.32~%
Crosses ≥ 2 APA or CPA	$403,\!034$	5.2282~%
Stopping	$1,\!840,\!093$	23.87~%
Exiting	5,868,689	76.13~%

1 GeV beam muons, ProtoDUNE-SP, reco

Statistic	Rate / 291.8 Days	$\%~\mu>3~{\rm m}$
Events	82,330	-
Tracks	$331,\!504$	2559.5~%
Muons	55,535	428.78~%
$\mu > 3 \text{ m}$	$12,\!952$	100~%
Crosses top or bottom	1063	8.2072 %
Crosses top and bottom	52	0.40148~%
Crosses front or back	12,528	96.726~%
Crosses front and back	7449	57.512~%
Crosses 1 APA or CPA	1162	8.9716~%
Crosses ≥ 2 APA or CPA	0	0 %
Stopping	4030	31.115~%
Exiting	8620	66.553~%

7 GeV beam muons, ProtoDUNE-SP, reco

Statistic	Rate / 223.1 Days	$\%~\mu>3~{\rm m}$
Events	62,980	-
Tracks	4,226,034	7826.9~%
Muons	236,766	438.5~%
$\mu > 3 \text{ m}$	$53,\!994$	$100 \ \%$
Crosses top or bottom	6024	11.157 %
Crosses top and bottom	261	0.48339~%
Crosses front or back	$48,\!695$	90.186~%
Crosses front and back	31,212	57.806~%
Crosses 1 APA or CPA	$12,\!633$	23.397~%
Crosses ≥ 2 APA or CPA	22	0.040745~%
Stopping	10,522	19.487~%
Exiting	38,773	71.81~%

Cosmics, ProtoDUNE-SP, reco

Statistic	Rate / 35.43 Days	$\%~\mu>3~{\rm m}$
Events	10,000	_ 1
Tracks	1,264,192	437.29 %
Muons	1,008,211	348.75~%
$\mu > 3 \text{ m}$	289,095	100~%
Crosses top or bottom	240,240	83.101 %
Crosses top and bottom	80,469	27.835~%
Crosses front or back	103,513	35.806~%
Crosses front and back	5234	1.8105~%
Crosses 1 APA or CPA	132,024	45.668~%
Crosses ≥ 2 APA or CPA	22,522	7.7905~%
Stopping	55,063	19.047~%
Exiting	217,778	75.331~%

ProtoDUNE samples: Visualising the true muons

ProtoDUNE samples: True start x position

ProtoDUNE samples: True muon energies

Reconstructed muons (fewer shown than in truth)

Higher energy \rightarrow higher beam plug activity.

Surface-level cosmics, pretty sporadic.

Lower energy \rightarrow higher halo activity.

Reconstructed muons: τ_{e} -corrected dQ/dx

Clear peak at 1 GeV and large statistical and energy contributions from the halo. Clear peak at 7 GeV, lower-energy tail and lower statistical contributions from the halo.

Reconstructed muons: MP dQ/dx extraction

ProtoDUNE samples: True θ_{XZ}

ProtoDUNE lifetime calculation

- The values of τ_e presented on the previous slide vary substantially from the simulated value for many reasons & I don't want to reinvent the wheel
 - I will look into doing this properly before looking at data
- Whilst setting up the energy scale calibration tools to work at ProtoDUNE I will likely correct for the simulated lifetime to begin with
- I have instead evaluated the likely impact of a variation in the lifetime on the charge depositions at ProtoDUNE compared with the Far Detector (RHS)

A 10% variation in τ_e corresponds to a variation in Q_a/Q_c of: 15.4% at the FD 1.3% at ProtoDUNE

Looking at the muons

Location of the beam plug

The black line shows the location of the beam plug on the front face of the detector, and is projected along its direction onto the back face of the detector.

The activity surrounding this path is clear in the high-intensity plot on the RHS.

The angle of the beam is:

"It points down 11° from the horizontal, and towards the APA on the negative x side, 10° to the right of the z direction."

From the First Results paper.

34

Taken from the ProtoDUNE gdml files

Location of the beam plug

There is also a known 'muon halo' which originates from the decay of charged pions as they travel along the beamline, resulting in muons entering the TPC *"slightly upward and sidewards of the H4 beamline".* <u>ProtoDUNE TDR</u>.

According to the TDR this should be in the negative x-direction, however I'm not **yet** confident in the consistency of the direction definitions and looking at the TDR's expected behaviour of this halo I'm reasonably convinced that this is what we're seeing.

Sample tuning

- Use the rate of δ-ray activity surrounding the CR muons to characterise the energy dependence of the charge depositions
- Cut muons with fewer than $17 \times 10^{-3} \delta$ /cm from the sample to mitigate some of the energy dependence below 50 GeV
 - \circ This corresponds to a ~9% reduction in the statistics

Sample tuning

- Use the rate of δ-ray activity surrounding the CR muons to characterise the energy dependence of the charge depositions
- Cut muons with fewer than 17x10⁻³ δ/cm from the sample to mitigate some of the energy dependence below 50 GeV
 This corresponds to a ~9% reduction in the sample statistics
- Recalculate the best-fit value of dQ/dx after cutting the sample to quantify the reduced energy dependence
- Define a systematic parameter which quantifies the effect and apply the residual variation as an uncertainty on the energy scale measurement

Reconstructed dE/dx

This absolute energy-scale calculation on 'data' can be extremely simple, owing to the lack of energy reconstruction:

Fit a Landau x Gaussian to dQ/dx in 1D and scale to the L-V dE/dx for the average energy and thickness.

The uncertainties were applied by throwing 2000 toys within the 1σ scale-factor uncertainty and extracting the 1σ dE/dx uncertainty from that.

 $S = (6.16 \pm 0.08) \times 10^{-3} [MeV/ADC] (stat+syst, 1.23\%)$ dE/dx_{1, V} = 1.804 MeV/cm (<u>µ: 292 GeV @ 5.3 mm thickness</u>)

 $\times 10^9$

0.8

0.6

Mod-Box dE/dx

MPV:

1.87 MeV/cm

2.07 MeV/cm

Gaussian µ:

Scaled dE/dx

Average:

2.64 MeV/cm

3.5

3

Systematic uncertainty contributions: Energy-dependence of the charge depositions Electron lifetime calculation

Systematics

Nominal MPV **Energy-dependence** Simulated lifetime correction [W 315] 310 310 305 305 300 [u] 315 310 310 305 315 310 310 305 300 290 285 ${dQ/dx_{ m MPV}=303.914}\,{ m [ADC/cm]}\ \chi^2/ndof=45/42$ $dQ/dx_{ m MPV}=300.353$ [ADC/cm] $\chi^2/ndof=49/42$ $dQ/dx_{ m MPV}=303.463$ [ADC/cm] $\chi^2/ndof=3951/56$ 305 xp/Op 300 Reconstructed 5 585 582 582 295 290 285 $\sigma_E = 0.451~(0.15\%)$ $\sigma_{ au} = 3.561 \ (1.17\%)$ 280 280 280 275 275 275 10 10^{2} 10^{3} 10^{2} 10^{3} 10^{2} 10^{3} 10 10 True muon energy [GeV] True (generated) μ energy [GeV] True muon energy [GeV]

$$\sigma_{E, au} = dQ/dx_{ ext{Nominal}} - dQ/dx_{E, au}$$

More details in at the <u>September CM</u>

