TMS Timing Simulation Update Redux TMS Meeting

Jeffrey Kleykamp 2023-02-01

Introduction

- DUNE/dune-tms package handles edep sim output to do TMS simulation and reco
 - Made by Clarence Wret
- With overlay/pileup option enabled, we get \sim 130 interactions per spill
- With scintillator, timing resolution is very fast
 - Time slicing
- Also added timing simulation

Reorganization of dune-tms code

Reconstruction: Simulation: Merge edep hits Pedestal subtraction Track/cluster reconstruction

Reorganization of dune-tms code

Added timing effects, and time slicer

Simulation:

Merge edep hits
Pedestal subtraction
Optical model effects
Changes to hit energy
Timing reco effects
Changes to hit time

Reconstruction:

Time Slicing
Track/cluster reconstruction

Reconstruction Effects

- Electronic errors 🗸
 - Used dt = 1ns, seen dt \sim 150ps
- Optical fiber delay lengths
 - Assuming n=1.5
- Time slew ✓
 - Next slide
- Deadtime simulation
 - Is 500ns of deadtime correct?
- Other effects:
 - Effects from noise, cross talk, afterpulsing
- Need some help with the parameters

Source of 500ns deadtime figure

- Slide from Sept collab meeting: link
- For testing specific ASIC alternative

Hit digitization

Conversion started after time-comparator fires

- Sample time stamp in TDC latches
- Configurable hold delay (~100ns) to sample peak
- ADC conversion, gain bit sampling
- Busy released after conversion is finished, ready for new hit → typical dead time ~500ns (10b ADC mode)

More questions about deadtime

- How exactly would it work
- In groups of 12, 48, 64 channels?
 - ie everything connected to the same FEB
- Deadtime after
 - reading each hit
 - or only after digitizing 7-8 hits?

Time Slew

- Hit time = earliest photon received
 - half go long way and bounce off end
 - Need optical model to correctly simulate PE
 - Assuming 50 PE / 1 MeV
- Assuming double exponential decay
 - WSF decay mean = 20ns (11ns?)
 - Scint decay mean = 2ns

Additional reco effect: poor calibration?

• Without a good sample of muons, it would be difficult to calibrate

• Find muons that start at the front and go to the back, and calibrate time using those

• Y position is currently in flux, but only need relative time between hits

Reco hit time - Interaction time

Time Slicing Algorithm

- If energy within a small window is > energy_threshold_1, start adding hits into a slice
- Continue adding until energy in window
 - < energy_threshold_2.

- Optimize to
 - Maximize energy fraction of single event
 - Minimize energy from secondary events
- Based on Minerva time slicing algorithm

Good separation for clear tracks

Pileup?

TMS starting event

Is this related to next? 1/2

Is this related to previous? 2/2

What are these? - Too aggressive?

Tuning parameters

- Starting energy threshold
- Ending energy threshold
- Window width
 - In principle there could be two, but only used a single one
- Minimum slice width
- Naming scheme
 - s10e5w10m19 = starting energy 10 MeV, ending 5 MeV, 10ns width, minimum 19 ns (distance between batches in flux)

Fraction of energy from primary vertex

ie purity

Fraction of energy from primary in slice

ie efficiency

Cases where most of primary vertex energy was captured in another slice Like if split too aggressively or michel

Todo improvements

- True primary vertex is vertex with most visible energy deposited in a slice
- Right now very little information is stored about
 - additional true vertices in a slice
 - cases where this slice's true primary vertex contributed to another slice
 - Like when you split a slice too aggressively
- Makes it difficult to measure true reco eff

Conclusion

- The timing reco effects have been added to simulation
 - Please let me know parameters, especially deadtime
 - Current plan is to separate detector simulation into its own program
- Time slicer added
 - Default option of s10e5w5m19 works reasonably well for now
 - Need to understand true reco cases, and various slices
 - What we're optimizing dictates choice of slicer parameters
- The next step would be to add slices to downstream CAFs

Backup

With and without timing reco effects

Total Track Energy (MeV)

N Hits

N Lines

Beam Spill Structure

Beam Substructure

EDepSimSpillTimeFactory.cc

- Edep sim has "factories" that allow you to event rates and event times via config file
- For pileup simulation, we setup the "mean" factory with a mean number of events per
 - By default all event times are 1ns
- But we can change to "spill" factory, which randomly picks from

a spill structure

• In theory we can set the individual bunch powers but do we really want 1000 different config lines to match exactly?

In edep sim's config file,
/generator/time/spill/start 0 ns
/generator/time/spill/bunchSep 10 ns
/generator/time/spill/bunchLength 5 ns
/generator/time/spill/bunchCount 1000
/generator/time/spill/bunchPower 1 0.5
/generator/time/spill/bunchPower 2 0.5
/generator/time/set spill

Example Event Rate

Before/After

Kevin Wood's Code

- I didn't know about this code
 - https://github.com/krwood/ND_Production/blob/feature_spillsFromEdepSim/geant4/ overlaySinglesIntoSpills.C
- Does a similar thing to edep sim's time factory but as a second program
 - But also the rest of pileup simulation
 - I like that edep sim separates N events and event times into two separate steps
 - We can simulate 1 event with random spill time, or 10 events, instead of just Poisson random
- In theory I can implement this
- One advantage is that the hit time is chosen randomly from the hit time histogram, automatically giving us the correct power as function of time.
 - Ideally I'd like this function to be integrated into edep sim instead

Spill simulation conclusions

- Now spill times are randomized
- This is also the case for the liquid argon section
- The next step is setting up a time slicer for TMS
- Eventually this will require reco effects

Using Time to Figure Out Pileup

Time Slicer Algorithm

- I'm familiar with Minerva's time slicer
- If energy within a small window is > energy_threshold_1, start adding hits into a slice
- Continue adding until energy in window
 - < energy_threshold_2.
- Optimize to
 - Maximize energy fraction of single event
 - Minimize energy from secondary events

Backup

Optical Model

Cross Talk

High cross-talk

3-5% effect

NuMI beam batch structure

