PPS: Status Report and Plans for 2023 and Beyond

Oli Gutsche, Charles Leggett, Meifeng Lin

HEP-CCE All Hands Meeting

Current Status of Projects

Tremendous work in the past 3 years!

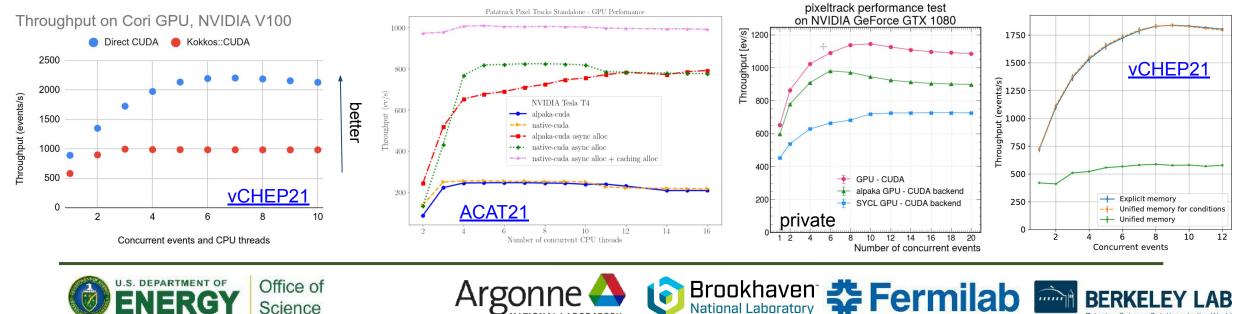
on top of rapidly shifting software and hardware

	Kokkos	SYCL	OpenMP	Alpaka	std::par
Patatrack	Done	Done	WIP	Done	Done compiler bugs
Wirecell	Done	Done	Done	NO	Done
FastCaloSim	regular: done group: done	regular: done group: <mark>NO</mark>	regular: done group: done	regular: done group: done	regular: done group: done
P2R	done	Done	OpenACC	Done	Done

Argo

Patatrack

CMS pixel reconstruction, developed originally in CUDA, extracted into a standalone application


HEP-CCE

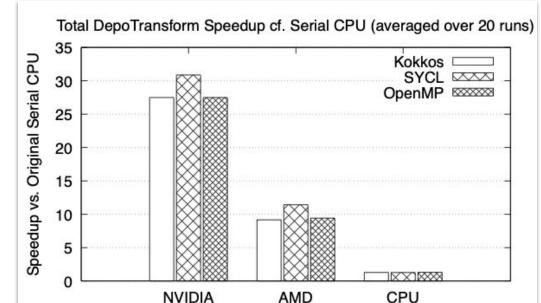
Bringing Science Solutions to the World

- Mimics relevant complexities of CMSSW framework and build system 0
- An evolved version of the code used in CMS High Level Trigger since 2022 Ο
- Ported to
 - Kokkos, HIP, std::par, OpenMP (WIP); CUDA Unified memory by CCE Ο
 - Alpaka by CERN group with some CCE involvement 0
 - SYCL by CERN group

Science

Working on consistent comparison between all for CHEP

Wirecell Toolkit


Three major steps of LArTPC simulation

- Rasterization: depositions → patches (small 2D array, ~20×20)
 - \circ # depo ~100k for cosmic ray event
- Scatter adding: patches \rightarrow grid (large 2D array, ~10k×10k)
- FFT: convolution with detector response

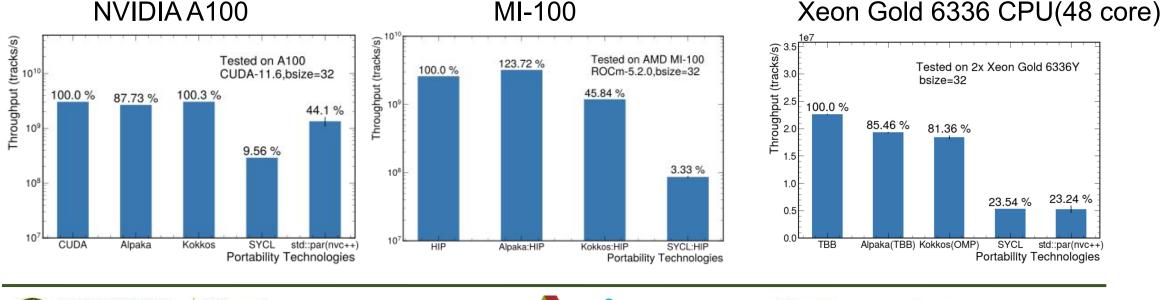
Current Status:

- Restructured the code to expose more parallelism
- Wrappers to use optimized vendor libraries
- Ported to CUDA (partial), Kokkos, SYCL, OpenMP and std::par implementations
- Developed a stand-alone testing framework (without LArSoft dependence)
- Validated and benchmarked Kokkos, SYCL and OpenMP implementations
- std::par benchmarking ongoing

Speedup in DepoTransform compared to original CPU on NVIDIA V100, AMD Raedon Pro VII, and AMD Ryzen 24-core CPU with Kokkos, SYCL and OpenMP

Publications:

Brookhaven[®]


- Yu, Haiwang, et al. "Evaluation of Portable Acceleration Solutions for LArTPC Simulation Using Wire-Cell Toolkit." *EPJ Web of Conferences*. Vol. 251. EDP Sciences, 2021.
- Dong, Zhihua, et al. "Evaluation of Portable Programming Models to Accelerate LArTPC Detector Simulations." *Journal of Physics: Conference Series.* Vol. 2438. No. 1. IOP Publishing, 2023.
- Lin, Meifeng, et al. "Portable Programming Model Exploration for LArTPC Simulation in a Heterogeneous Computing Environment: OpenMP vs. SYCL," [arXiv:2304.01841 [hep-ex]]

Fermilab

p2r

- Standalone track propagation+Kalman update kernels
 - Extracted from mkFit (vectorized-CPU full tracking application)
- Status:
 - Majority of porting done: CUDA, HIP, TBB (reference implementations) Alpaka, Kokkos, SYCL, std::par, OpenACC
 - Focus on benchmarking *CPU* results
 - GPU results submitted to ACAT proceedings: link
 - Present GPU+CPU results together with p2z in CHEP

Xeon Gold 6336 CPU(48 core)

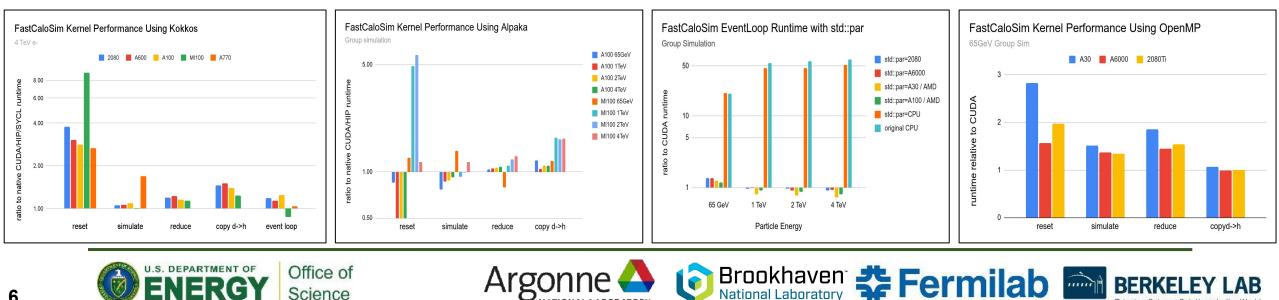
Brookhaven^{*} **Fermilab**

5

Bringing Science Solutions

FastCaloSim

ATLAS Parametrized Calorimeter Simulation


- "reset", "simulate", "reduce", "transfer"
- relatively uncomplicated kernels

Current Status

- **Publications:**
 - Dong, Zhihua et al. "Porting HEP Parametrized Calorimeter Simulation Code to GPUs", Frontiers in Big Data 4 (2021) 665783
- ported to Kokkos, SYCL (not group), std::par, OpenMP, alpaka
- benchmarking OpenMP ongoing

Science

waiting for NVIDIA to fix nvc++ to do multicore backend testing of std::par

ACTS

- We had high hopes that ACTS would have a full tracking chain enabled for GPU by now, but development has been slower than expected.
- Mainly due to "infrastructure" issues
 - Geometry description
 - Magnetic field maps
- ACTS has developed a robust data management system with both CUDA and SYCL backends
 - vecmem
- Some pieces (clusterization) have been ported to std::par
- Will be useful to monitor progress over the next year
 - question as to whether ATLAS will use GPUs for Run 4 and beyond is still in the air

Plans for FY23

End major code development by April 1 2023

- should still finish outstanding areas
- benchmark testbeds and platforms more consistently •
- monitor evolving compilers and hardware (H100, Grace/Hopper, Aurora)

Allocate remaining time to write reports

- expand the metrics notes, make more formal guidelines
 - If you are doing *this*, then choose *that* or don't choose *that* 0
- common format to report/store results
 - including metadata such as hardware, compiler/library/driver versions, code versions, etc Ο
- target conferences
 - CHEP 0
 - reporting current results
 - SC23 0
 - if the paper is accepted
 - can we do a BOF session?
 - not really the right audience for HEP
 - ACAT 24? (can't find a date)

Outreach

Report back to experiments

- present results in software meetings
 - ATLAS: June Software & Computing week
 - others?
- more focussed workshops
- get feedback from experiments do we have enough time?
 - \circ something to target beyond FY23
- what deadlines do experiments have for selecting the "next" language?

Report to community via other channels

- HSF
- IRIS-HEP
- when?

Both PPS and overview from all of CCE

Beyond FY23

Very important to continue monitoring portability layers

- hardware support, feature availability, performance
- especially wrt standards integration
 - std::par
 - senders / receivers
 - C++26

Integration with IOS

Other ideas?

Other Projects for FY24 - 29

HPC Friendly Data Models

• <u>link</u>

Distributed Scheduling

• <u>link</u>

Parallel Event Generators

• <u>link</u>

Simplify Statistical Analysis by using HPCs

• <u>link</u>

Data Reduction / Data Streaming

• <u>link</u>

LSST / DESC Workflows

• <u>link</u>

