
HEP-CCE

Event Generator Update and 
Future Plans

Taylor Childers (ANL) and Stefan Hoeche (FNAL)



HEP-CCETwo Ongoing Projects
 Pepper (was Blockgen) for Sherpa

 ANL: Taylor Childers, Rui Wang
 FNAL: Walter Giele, Stefan Höche, Joshua Isaacson
 Göttingen: Enrico Bothmann, Max Knobbe
 Designing a leading-order matrix element integrator and event generator for GPUs 

from the ground up. HEP-CCE contributing by porting to Kokkos.

 MadGraph for GPU
 ANL: Taylor Childers, Walter Hopkins, Nathan Nichols,
 CERN: Laurence Field, Stefan Roiser, David Smith, Andrea Velassi
 UC-Louvain: Olivier Mattelaer
 Retrofit of leading-order MadGraph Fortran algorithm to run on GPUs. CERN team 

developing CUDA version. HEP-CCE team + ALCF developing Kokkos and Sycl 
version.

 



HEP-CCEPepper Update
ACAT 2022 Results

● Extension from pure QCD to V+jets 
using novel color decomposition

● Realistic setup for ME computation  
Include all sub-processes, no PDF

● Compare dedicated C++ Version    
with dedicated Cuda version 

● Phase Space: Rambo                  
CPU: i3-8300 CPU @ 3.70GHz  
GPU: Tesla V100S

● Excellent performance compared to 
current Sherpa standalone (Comix)

https://indico.cern.ch/event/1106990/contributions/4997238/


HEP-CCEPepper Update

ACAT2022 Results
● Kokkos portability framework to access all modern (co-)processors
● Very good performance in comparison to C++/CUDA prototypes
● Currently being integrated into event processing framework

https://indico.cern.ch/event/1106990/contributions/4997239/


HEP-CCEMadGraph Update
● CERN team leads CUDA development
● ANL team leads Kokkos and Sycl development
● Historically MadGraph uses a python user interface, 

which generates, compiles, and runs FORTRAN code 
to generate events.

● Process began with a CUDA implementation of the 
Matrix Element (ME) calculations which are used to 
calculate the interaction cross-section for a process 
and are the biggest computational piece.

● Kokkos port followed, then Sycl, then Alpaka, and the 
CUDA port was extended to also offer OpenMP



HEP-CCEResults at ACAT2022

Presented results at ACAT2022
● tt+2jet process has reasonable computational needs on an accelerator.
● Shows the power of using portability frameworks to access all modern silicon.
● XE-HPC is an early Aurora-type GPU.

Proceedings draft on arXiv:2303.18244

https://indico.cern.ch/event/1106990/contributions/4997226/
https://arxiv.org/abs/2303.18244


HEP-CCESetup for multi-node running

● MadEvent is a serial Fortran code calling our parallelized-C++ Sycl version of 
the leading-order matrix element calculations.

● We’ve developed a set of wrapping applications that can run MadEvent using 
MPI across multiple nodes of an HPC

Rank 0

Shared 
FS

R
A

M
 D

is
k

mpiexec Rank 1

Rank 2

Rank 3

madevent
madevent
madevent
madevent

re
ad

R
A

M
 D

is
k

Shared 
FS

Rank 0

Rank 1

Rank 2

Rank 3

M
P

I C
om

m

write writeread read

M
P

I C
om

m



HEP-CCEScaling Tests on Polaris with Sycl Version Only

● Matrix element calculation rate is stable, but overall run time is increasing
● At 490 nodes of polaris, we are producing 12,126,203 tt+2jet events.
● Polaris is a 500 node system at ALCF (4x A100 per node).



HEP-CCEScaling Tests on Polaris with Sycl Version Only

● Matrix element calculation rate is stable, but overall run time is increasing
● At 490 nodes of polaris, we are producing 12,126,203 tt+2jet events.
● The distribution of time spent at each scale shows that the IO parts are 

increasing in overall run proportion, driving up run times.



HEP-CCEFuture Plans
 Pepper / Sherpa

 Combination with parton-level integrator developed during SciDAC-4.
 Integration into event generation framework developed during SciDAC-4.
 Integration into ATLAS/CMS workflow.
 Tests & performance tuning on available hardware.

 MadGraph for GPU
 Aiming for alpha release by CHEP in May.
 Focusing on Sycl port and dropping support for Kokkos
 Continuing to test different processes.
 Walter working with Nathan to produce SUSY signal samples for an analysis.
 Aurora scaling testing will be done when machine is accessible.

Longer Term:
Begin NLO algorithmic R&D


