
Suggested line of text (optional):

WE START WITH YES.

Analyzing HEP workflow
I/O behavior with Darshan

erhtjhtyhy

Douglas Benjamin2, Patrick Gartung3, Kenneth Herner3,
Shane Snyder1, Rui Wang1, Zhihua Zhang2

1. Argonne National Laboratory
2. Brookhaven National Laboratory
3. Fermi National Accelerator Laboratory

HEP-CCE AHM, April ‘23
1

Darshan background
❖ Darshan is a lightweight I/O characterization tool

that captures concise views of HPC application
I/O behavior
➢ Produces a summary of I/O activity for each

instrumented job
■ Counters, histograms, timers, & statistics
■ If requested by user, full I/O traces

❖ Widely available – Deployed (and commonly
enabled by default) at many HPC facilities

❖ Easy to use – no code changes required
❖ Modular – straightforward to add new

instrumentation sources

2

Darshan enhancements for HEP use case
❖ Handling of fork() (AthenaMP)

➢ Forked processes inherit a copy of parent process’s memory – including all Darshan library
instrumentation state

■ Child process logs inaccurate as they include all pre-fork parent I/O
➢ Modifications made to Darshan library to resolve this:

■ Mechanism to reset a process’s instrumentation state
■ Use pthread_atfork() function to define handler that resets Darshan state on fork children

3

Darshan enhancements for HEP use case
❖ Detailed runtime library configuration

➢ HEP Python frameworks access tons of files, many irrelevant for I/O analysis (shared libraries,
headers, compiled Python byte code, etc.)

➢ Darshan users need more control over memory limits and instrumentation scope
➢ Comprehensive runtime library configuration integrated into Darshan

■ Total and per-module memory limits
■ File name patterns to ignore
■ Application name patterns to ignore

4

allocate 4096 file records for POSIX and MPI-IO modules
(darshan only allocates 1024 per-module by default)
MAX_RECORDS 5000 POSIX

the '*' specifier can be used to apply settings for all modules
in this case, we want all modules to ignore record names
prefixed with "/home" (i.e., stored in our home directory),
with a superseding inclusion for files with a ".out" suffix)
NAME_EXCLUDE .pyc$,^/cvmfs,^/lib64,^/lib,^/blues/gpfs/home/software *
NAME_INCLUDE .pool.root.* *

bump up Darshan's default memory usage to 8 MiB
MODMEM 8

avoid generating logs for git and ls binaries
APP_EXCLUDE git,ls,sh,hostname,sed,g++,date,cc1plus,cat,which,tar,ld

Characterize of various workflow stages at scale to gain insight on the I/O patterns

▪ Guide the further tuning of the I/O patterns to better inform storage capabilities
requirements at facilities

▪ Uncover the I/O bottlenecks in current workflows when deployed at scale
▪ Provide recommendations for data format and access patterns for future HEP workloads

Darshan for HEP

ATLAS & CMS ATLAS ATLAS & DUNE

Runtime configs and examples are collected under HEP-CCE IOS repository

https://github.com/hep-cce2/IOSwork/tree/main/darshan

ATLAS offline software – Athena
Serial Athena Run1

Multi-Process Run2 – Run3
– AthenaMP+standalone merging

• Independent parallel workers are forked from main process with
shared memory allocation

• Each worker produces its own outputs and merged later via a
post-processing merge process

– AthenaMP+SharedWriter
• A shared writer process does all the output writes
• Reduce time on single thread merging process

– AthenaMP+sharedWriter (parallelCompression)
• Using parallel compression to reduce the time increment when

moving to higher No. of process

Multi-thread Run3
– AthenaMT

• Gaudi task scheduler maps task to kernel threads
• Shared single pool of heap memory

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Computingand
SoftwarePublicResults

Athena I/O characterization

7

Study Initiated

MC Simulation – CPU intensive
Report @ Oct. 2022 AHM
● AthenaMP+Standalone merging
● AthenaMP+SharedWriter
● AthenaMT

Derivation (DAOD) production – I/O intensive
● AthenaMP+Standalone merging
● AthenaMP+SharedWriter
● AthenaMP+SharedWriter (parallel compression)

○ Enabled only for >1K process

xAOD Analysis
● Athena (serial)

https://indico.fnal.gov/event/56044/contributions/251331/attachments/160512/211500/Darshan_Athena.pdf

DAOD Production – POSIX operations

– Standalone merging reads all output file of each worker then write to a single file

– SharedWirter take over all the writes each worker does

– Additional reads in the shared writer process when using parallel compression

8

9

● PHYS: AOD data model
with reduced trigger, MC
truth and tracking info

● PHYSLITE: event with
calibrated objects, further
reduced list of variables
from PHYS

● PHYS-PHYSLITE:
producing PHYS then
PHYSLITE in a train
(default for ATLAS
production)

Auto flush: 100 events
READ

WRITE

Dominated by the
standalone merging

DAOD Production – POSIX operations

AOD*.pool.root*

DAOD*.pool.root*
PHYSLITE ~50% less

Additional bytes with
parallel compression

10

READ

WRITE

DAOD Production – Read/Write

Activities per auto flush

Auto flush: 100 events

3.6K/proc

Everything monitored at runtime

Everything monitored at runtime

AOD*.pool.root*
DAOD*.pool.root*

AOD*.pool.root*
DAOD*.pool.root*

ATLAS Workflow monitoring
Darshan has been installed in ATLAS ALRB as an
external tool available from CVMFS

– lsetup darshan

– Work out of box when proper log path been
provided

– Relocatable preferred for the future release
• No issue found in the current build with the darshan

tools

Plan
– Add to pilot

• Job could have Darshan enabled during submission
– Customized runtime config example for each

stage
– Monitoring plots

• Input, output & condition data

> export
ATLAS_LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/ATLASLoca
lRootBase
> source ${ATLAS_LOCAL_ROOT_BASE}/user/atlasLocalSetup.sh -3
> lsetup darshan

**
Requested: darshan ...
 Setting up darshan 3.4.2-fix1-x86_64-centos7 ...
>>>>>>>>>>>>>>>>>>>>>>>>> Information for user
<<<<<<<<<<<<<<<<<<<<<<<<<
 darshan:
 DARSHAN_LOGDIR is set to
/lcrc/group/ATLAS/users/rwang/Argonne_computing/PPS-CCE/darsh
an/darshan_test/athena
 Or you can 'export DARSHAN_LOGDIR=<path>' to customize the
log path.
 You must 'export LD_PRELOAD=$DARSHAN_LD_PRELOAD' to
enable instrumentation
 of applications.
**

ATLAS Software performance monitoring
Release change in the software could make large impact
on the performance

– ATLAS SPOT monitoring the performance of the software,
including the transient and persistent event data models

– Guiding the evolution of the software and EDM in order to
optimize performance in its multiple aspects: technical
performance, resource usage needs and usability for
analysis

Plan
– Design and add Darshan test to SPOT

• SPOT use prmon to trace the overall performance
• Darshan provides insight on forked processes in time &

detailed data access of specific file(s)

https://atlaspmb.web.cern.ch/atlaspmb/

Input data

output data

Cond data

Dummy example

https://atlaspmb.web.cern.ch/atlaspmb/

CMS plan
● Currently working on capturing MPI and

HDF IO info in Darshan logs for
mpi_threaded_test_io
○ Captures POSIX and MPI IO info

but only in non-MPI mode – Each
rank is treated as a process.

13

 plan
❖ Currently working on benchmarking some workflows that make use of GPUs in

part
❖ Might need some development effort to capture the I/O in this case (doesn’t go

through an intermediate file) but would be interesting to see
❖ Currently using ROOT files, but will start looking at algos that read in HDF5 files

in the intermediate term (ProtoDUNE Run II DAQ will generate HDF5)

14

Darshan white paper

15

https://www.overleaf.com/project/64246f4b882e40db87f8d53f

Drafted

Next steps for Darshan
❖ Instrumentation of Intel DAOS I/O libraries

➢ Upcoming exascale system at Argonne, Aurora, will feature a new-to-HPC
object-based storage system

➢ Appealing performance characteristics for I/O middleware (e.g., HDF5 and
ROOT) that can effectively leverage storage model

➢ File-based module complete, native object-based module underway

❖ Darshan analysis tools for workflows
➢ Refactor PyDarshan code to more easily allow aggregation and

visualization of Darshan data across multiple logs (e.g., multiple logs
generated by the steps of an HEP workflow)

➢ Planning underway, aim to push on this development this summer
with a student

16

