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Darshan background
❖ Darshan is a lightweight I/O characterization tool 

that captures concise views of HPC application 
I/O behavior
➢ Produces a summary of I/O activity for each 

instrumented job
■ Counters, histograms, timers, & statistics
■ If requested by user, full I/O traces

❖ Widely available – Deployed (and commonly 
enabled by default) at many HPC facilities

❖ Easy to use – no code changes required
❖ Modular – straightforward to add new 

instrumentation sources
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Darshan enhancements for HEP use case
❖ Handling of fork() (AthenaMP)

➢ Forked processes inherit a copy of parent process’s memory – including all Darshan library 
instrumentation state

■ Child process logs inaccurate as they include all pre-fork parent I/O
➢ Modifications made to Darshan library to resolve this:

■ Mechanism to reset a process’s instrumentation state
■ Use pthread_atfork() function to define handler that resets Darshan state on fork children
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Darshan enhancements for HEP use case
❖ Detailed runtime library configuration

➢ HEP Python frameworks access tons of files, many irrelevant for I/O analysis (shared libraries, 
headers, compiled Python byte code, etc.)

➢ Darshan users need more control over memory limits and instrumentation scope
➢ Comprehensive runtime library configuration integrated into Darshan

■ Total and per-module memory limits
■ File name patterns to ignore
■ Application name patterns to ignore
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# allocate 4096 file records for POSIX and MPI-IO modules
# (darshan only allocates 1024 per-module by default)
MAX_RECORDS     5000      POSIX

# the '*' specifier can be used to apply settings for all modules
# in this case, we want all modules to ignore record names
# prefixed with "/home" (i.e., stored in our home directory),
# with a superseding inclusion for files with a ".out" suffix)
NAME_EXCLUDE    .pyc$,^/cvmfs,^/lib64,^/lib,^/blues/gpfs/home/software   *
NAME_INCLUDE     .pool.root.*   *

# bump up Darshan's default memory usage to 8 MiB
MODMEM  8

# avoid generating logs for git and ls binaries
APP_EXCLUDE     git,ls,sh,hostname,sed,g++,date,cc1plus,cat,which,tar,ld



Characterize of various workflow stages at scale to gain insight on the I/O patterns

▪ Guide the further tuning of the I/O patterns to better inform storage capabilities 
requirements at facilities

▪ Uncover the  I/O bottlenecks in current workflows when deployed at scale
▪ Provide recommendations for data format and access patterns for future HEP workloads

Darshan for HEP

ATLAS & CMS ATLAS ATLAS & DUNE

Runtime configs and examples are collected under HEP-CCE IOS repository 

https://github.com/hep-cce2/IOSwork/tree/main/darshan


ATLAS offline software – Athena
Serial Athena Run1

Multi-Process      Run2 – Run3
– AthenaMP+standalone merging

• Independent parallel workers are forked from main process with 
shared memory allocation

• Each worker produces its own outputs and merged later via a 
post-processing merge process

– AthenaMP+SharedWriter
• A shared writer process does all the output writes
• Reduce time on single thread merging process

– AthenaMP+sharedWriter (parallelCompression) 
• Using parallel compression to reduce the time increment when 

moving to higher No. of process

Multi-thread Run3
– AthenaMT

• Gaudi task scheduler maps task to kernel threads
• Shared single pool of heap memory

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Computingand
SoftwarePublicResults



Athena I/O characterization

7

Study Initiated 

MC Simulation – CPU intensive 
Report @ Oct. 2022 AHM
● AthenaMP+Standalone merging
● AthenaMP+SharedWriter
● AthenaMT

Derivation (DAOD) production – I/O intensive
● AthenaMP+Standalone merging
● AthenaMP+SharedWriter
● AthenaMP+SharedWriter (parallel compression)

○ Enabled only for >1K process 

xAOD Analysis
● Athena (serial)

https://indico.fnal.gov/event/56044/contributions/251331/attachments/160512/211500/Darshan_Athena.pdf


DAOD Production – POSIX operations

– Standalone merging reads all output file of each worker then write to a single file

– SharedWirter take over all the writes each worker does

– Additional reads in the shared writer process when using parallel compression  
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● PHYS: AOD data model 
with reduced trigger, MC 
truth and tracking info

● PHYSLITE: event with 
calibrated objects, further 
reduced list of variables 
from PHYS

● PHYS-PHYSLITE: 
producing PHYS then 
PHYSLITE in a train 
(default for ATLAS 
production)

Auto flush: 100 events
READ

WRITE

Dominated by the 
standalone merging

DAOD Production – POSIX operations



AOD*.pool.root*

DAOD*.pool.root*
PHYSLITE ~50% less

Additional bytes with 
parallel compression 
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READ

WRITE

DAOD Production – Read/Write

Activities per auto flush

Auto flush: 100 events

3.6K/proc

Everything monitored at runtime

Everything monitored at runtime

AOD*.pool.root*
DAOD*.pool.root*

AOD*.pool.root*
DAOD*.pool.root*



ATLAS Workflow monitoring
Darshan has been installed in ATLAS ALRB as an 
external tool available from CVMFS

– lsetup darshan

– Work out of box when proper log path been 
provided

– Relocatable preferred for the future release
• No issue found in the current build with the darshan 

tools

Plan
– Add to pilot

• Job could have Darshan enabled during submission
– Customized runtime config example for each 

stage
– Monitoring plots

• Input, output & condition data

> export 
ATLAS_LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/ATLASLoca
lRootBase
> source ${ATLAS_LOCAL_ROOT_BASE}/user/atlasLocalSetup.sh -3
> lsetup darshan

************************************************************************
Requested:  darshan ... 
 Setting up darshan 3.4.2-fix1-x86_64-centos7 ... 
>>>>>>>>>>>>>>>>>>>>>>>>> Information for user 
<<<<<<<<<<<<<<<<<<<<<<<<<
 darshan:
   DARSHAN_LOGDIR is set to 
/lcrc/group/ATLAS/users/rwang/Argonne_computing/PPS-CCE/darsh
an/darshan_test/athena
    Or you can 'export DARSHAN_LOGDIR=<path>' to customize the 
log path.
   You must 'export LD_PRELOAD=$DARSHAN_LD_PRELOAD' to 
enable instrumentation
    of applications.
************************************************************************



ATLAS Software performance monitoring
Release change in the software could make large impact 
on the performance

– ATLAS SPOT monitoring the performance of the software, 
including the transient and persistent event data models

– Guiding the evolution of the software and EDM in order to 
optimize performance in its multiple aspects: technical 
performance, resource usage needs and usability for 
analysis

Plan
– Design and add Darshan test to SPOT

• SPOT use prmon to trace the overall performance 
• Darshan provides insight on forked processes in time & 

detailed data access of specific file(s)

https://atlaspmb.web.cern.ch/atlaspmb/

Input data

output data

Cond data

Dummy example

https://atlaspmb.web.cern.ch/atlaspmb/


CMS plan
● Currently working on capturing MPI and 

HDF IO info in Darshan logs for 
mpi_threaded_test_io
○ Captures POSIX and MPI IO info 

but only in non-MPI mode – Each 
rank is treated as a process.
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            plan
❖ Currently working on benchmarking some workflows that make use of GPUs in 

part
❖ Might need some development effort to capture the I/O in this case (doesn’t go 

through an intermediate file) but would be interesting to see
❖ Currently using ROOT files, but will start looking at algos that read in HDF5 files 

in the intermediate term (ProtoDUNE Run II DAQ will generate HDF5)
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Darshan white paper
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https://www.overleaf.com/project/64246f4b882e40db87f8d53f

Drafted



Next steps for Darshan
❖ Instrumentation of Intel DAOS I/O libraries

➢ Upcoming exascale system at Argonne, Aurora, will feature a new-to-HPC 
object-based storage system

➢ Appealing performance characteristics for I/O middleware (e.g., HDF5 and 
ROOT) that can effectively leverage storage model

➢ File-based module complete, native object-based module underway

❖ Darshan analysis tools for workflows
➢ Refactor PyDarshan code to more easily allow aggregation and 

visualization of Darshan data across multiple logs (e.g., multiple logs 
generated by the steps of an HEP workflow)

➢ Planning underway, aim to push on this development this summer 
with a student
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