
HEP-CCE

HDF5 as intermediate
storage for HPC processing

Saba Sehrish for the CCE IOS team

HEP CCE All-hands Meeting Meeting Spring 2023

HEP-CCE
Goal

• Evaluate if moving intermediate data (i.e. data
between different processing steps) of an HEP
workflow to a parallel file format (such as HDF5)
could be beneficial for HEP data processing on
HPC?
• To support complex data models the strategy is to

use ROOT serialization and store BLOBs in HDF5

HEP-CCE
Recap from Fall 2022 - Next steps and plan for FY23

• Complete performance evaluation studies on Cori
• Understand IO behavior, untimed calls that are actually constituting

50% of the IO time, use Darshan logs
• Move evaluation studies to Perlmutter soon
• Write a paper/report
• HDF5 optimizations

HEP-CCE
Current status overall

Major Activities Status

Multithreaded test framework development Complete

Serial output and input modules development
and evaluation

Complete

MPI extension and Parallel HDF5 output
modules development and evaluation

Evaluation

Report In progress

In the last all hands meeting in October, we presented the parallel design for
HDF5 approach and some initial studies.
Since then we are focusing on gathering more results on Cori (later on
Perlmutter if needed) and analyzing them and working on our final report.

https://github.com/hep-cce2/root_serialization/tree/master

HEP-CCE
Some observations and takeaways

• Snowmass 2021 paper based on some of the initial work
• The test framework with an experiment independent design

provided a means for studying
• Root serialization and thread scaling behavior beyond what can

be done now (more than 8 threads …)
• Investigate various input/output modes

• There is no scaling limitation imposed by the test
framework, anything we observe in IO scaling is due to the
IO libraries in question

• Several findings regarding root serialization scaling resulted
in improvements and fixes in ROOT and were directly
applied to CMSSW

• More in the CMS experiment talk

https://arxiv.org/abs/2203.07885

HEP-CCE
Some observations and takeaways

• Serial HDF5 writing performance comparable with ROOT
• A much simpler format PDS performed the best for the BLOB

storage of intermediate data
• Parallel HDF5 implementation shows performance scaling

with the number of nodes
• Overhead of using MPI as compared with serial HDF5 on a single

node -- if running on a single node use serial mode
• Can make use of expert guidance on current implementation

• Multiple MPI ranks per node (4 per Haswell node on Cori) performs
the best

• Studies include both Lustre file system and burst buffers
• Darshan logs show a mix of different sized writes (~40% 4-10MB,

and rest smaller) - still need to be investigated.

HEP-CCE
From serial HDF5 to PHDF5

HEP-CCE
Some observations and takeaways

• CMSSW uses multithreading and there is no apparent use of
multiprocess supported parallel IO

• Primitive multithreaded IO capability in HDF5 was never
explored

• Athena can use multiprocessing or multithreading and did
implement a prototype for serial HDF5 writing using the CCE
work

• DUNE uses HDF5 (in their DAQ system) and have no
“immediate” use of parallel IO

HEP-CCE
Status of the report
• In progress, goal is to complete by CHEP 2023.
• The current draft is on overleaf, and includes

• Details about the test framework
• Technical details for serial and parallel HDF5 design
• Analysis and plots for serial output modes comparison
• Analysis and plots for parallel output mode (scaling)

HEP-CCEMore on future directions

• There are several HDF5-related technical tasks that we can
carry out such as

• Potential work on more direct HDF5 mapping for subset of
experiments data (e.g. nano-AOD, PHYSLITE, DUNE DAQ) that
have data models with limited complexity.

• Investigate HDF5's capability for offloading data to GPU.
• Study HDF5 as data format for AI/ML.
• Apply lessons learned with HDF5 to other I/O backends (e.g.

Parquet).
• Looking forward to learn from experiments on their IO

needs and interests

HEP-CCE
Parallel HDF5 approach - recap
• N number of MPI ranks participate in the reading of file(s)

and write to a single HDF5 file collectively (i.e. parallel write
across a single dataset).
• Writing a file collectively has the advantage that the final file

might not need merging.

• The key feature in the parallel design is event distribution
approach among MPI ranks and the use of MPI functions to
exchange relevant information such as data sizes and
offsets to coordinate for collective IO.
• Store events as blobs in a single HDF5 dataset, and aggregate

events before writing

