
HEP Workflows and Leadership Facilities

HEP-CCE All Hands Meeting
April 11-12, 2023

● To an external observer, HEP community has many workflow technologies,
which often serve specific use-cases, monolithic, and difficult to extend.

● Performance on leadership platforms is complex even for simple workflows;
HPC workflows will only get more important, but increasingly harder
○ See few slides at end for illustrative challenges

● Opportunity to harmonize use of experiment-agnostic components, integrable
solutions for extensibility and modularity on leadership platforms.

● Challenges:
○ No single approach as experiments at different maturity-levels, development

cycle, and readiness to adopt external tools
○ Difficult to integrate new software into existing software infrastructure

Complex Workflows in HEP-CCE: Overview

Complex Workflows in HEP-CCE: Analysis

There are some valid underlying reasons for experiment specialization:
● Use cases with completely different workflow structures
● Resources with very different optimization goals
● Execution systems with fundamentally different capabilities

There are missed opportunities for interoperability and reuse across experiments
● Workflow components/sub-systems be reused
● Workflows be ported between systems
● Well defined performance, portability, provenance
● Leverage HPC-workflow experience on DOE Leadership Platforms

We discuss two prime examples ..

Data challenge 2 (DC2)

Simulating LSST images
across ALCF and NERSC

Driven from Jupyter
notebooks with
containerized code

Extreme-scale Cosmology with LSST DESC

Enhancing portability and
scalability of the LSST processing
pipelines to run on DOE facilities

Parsl to compose scalable and
portable workflows from the Python
DRP components (run at NERSC)

DESC et al, The LSST DESC DC2 Simulated Sky
Survey, The Astrophysical Journal, 2021.

Villarreal et al. Extreme scale survey simulation
with Python Workflows, eScience 2021

Rubin LSST image processing steps
Rubin Data Management provides a
package,ctrl_bps, to support processing
of graphs on multi-node resources.
ctrl_bps accepts plugins based on
specific workflow systems to manage
execution, e.g., HTCondor, Pegasus,
Parsl, PanDA.
DESC implemented a plugin based on
Parsl for running on NERSC Cori and
Perlmutter systems.

● Various Parsl executors:
ThreadPool, HighThroughput,
WorkQueue

● Rubin pipeline jobs have a large
range of resource requirements:
sub-GB to 10s of GB memory
usage, few minute to several hours
of runtime ⇒ WorkQueue is the
most useful.Slurm and Local
providers used

5

Graph showing dependencies between task types for
Rubin image processing. red operate on CCD-visits, blue
tasks on patches, and purple on both.

~40M
instances

28M
instances

Credit: Jim Chiang

CW Working Group | Early Exploration
● Prototype effort to explore remote execution with funcX

○ funcX-based remote machine learning training for ATLAS
(https://github.com/ValHayot/funcXtraining/)

● Explored middleware integration capabilities:

○ Developed RESTful API prototype for RADICAL-Pilot (high-performance
task execution system).

● Early runs of adapted HEP frameworks on HPC production resources Theta &
ThetaGPU (ALCF):

○ FastCaloSim GPU (https://github.com/cgleggett/FCS-GPU): adapted
version of the ATLAS Fast Calorimeter Simulation framework.

○ HEPscore (https://gitlab.cern.ch/hep-benchmarks/hep-score): a
benchmark based on containerized HEP workloads.

https://github.com/ValHayot/funcXtraining/
https://github.com/cgleggett/FCS-GPU
https://gitlab.cern.ch/hep-benchmarks/hep-score

CW Working Group | Outputs
• Representation from HEP experiments:

• DUNE, LSST, DESC, Coffea, ATLAS/Panda

• Most systems are defining a task graph representation

⇒ Opportunity to choose a common task graph representation that can be ingested by others

• Support for streamlined remote execution

⇒ Building on tools like funcX to enable such execution

⇒ Representation of the cross system execution of workflows

• Support for malleable MPI jobs

⇒ Workflow systems (e.g.,RCT) able to exploit scheduler support and other interfaces for
managing MPI jobs

• Guarantee maximum resource utilization

⇒ Allocation of resources with regards of task parameters (to avoid underutilization of resources
with long-tail executing tasks)

• Diverse and distributed monitoring information

⇒ Common monitoring approach (consolidating information from various layers) 7

Formalizing HEP Requirements on LCF

● Software requirement specification (SRS) complete (survey) for July 2023
○ Mikhail Titov (BNL), Valerie Hayot (ANL), others welcome

● Workflow requirements: (i) PST and/or DAG, (ii) groups of tasks with no
dependencies, (iii) static, dynamic, adaptive, stream, etc.

● Workloads requirements: (i) number of tasks, (ii) static, dynamic, adaptive,
stream, etc. (iii) heterogeneous/homogeneous.

● Task requirements: (i) kind (executable/function), (ii) amount of resources
(CPU cores, GPUs, Memory).

● Data requirements: (i) input/output size total/per task, (ii) location of
input/output data, (iii) staging, (iv) read/write I/O rate, (v) format

● Performance and scale requirements

8

ExaWorks is providing a production-grade Software
Development Kit (SDK) for exascale workflows

ExaWorks SDK democratizes access to hardened,
scalable, and interoperable workflow technologies and
components, for both developers and users
● E4S-based community policies for software quality
● Open community-based design and

implementation process
● Scalability of components on Exascale Systems
● Standard packaging and testing
● Work toward shared capabilities in the SDK

ExaWorks is not developing a workflow system!

9

CI & deployment infrastructure for workflow tools

• Developed a GitLab CI infrastructure
• Set up CI at LLNL, ORNL, and ANL

for the SDK components
• Testing PSI/J on an ECP testing

cluster
• Developed a testing server to collect

results of tests and enable
dashboards and reporting from
multiple sites

• Creating Status Dashboard to view
what tests have been run on which
systems

PSI/J: Portable Submission Interface for Jobs

11

● PSI/J Python binding
○ Python library with asynchronous interface for

interacting with job schedulers
○ Supports Slurm, LSF, Cobalt, Flux; PBS and other

schedulers coming
○ Architected to allow seamless contributions from

the community

● Eventually the PSI/J specification will cover more
advanced job-management functionality, such as
job submission on remote clusters (“layer 1”).

● We have integrated PSI/J into RADICAL-Cybertools
and Parsl

Why ExaWORKS Components?
1) Reduce overheads

a) Share common components and reduce development, testing,
maintenance, etc. costs

b) Build upon robust capabilities
c) Enhance portability

2) Establish an ecosystem of complementary capabilities
a) Simplify adoption of different workflow tools for different problems
b) Improve user experience

3) Enable innovation
a) Focus on innovation at higher levels of the workflows stack

4) Post-ECP: Central to “Workflows and Application Services” seed

Summary
● HEP-CCE can guide adoption of HPC workflows on LCFs and

support new workflow development (e.g., DUNE, GPU workflows)
● Exploration of HEP workloads (and corresponding frameworks) and

their test runs on HPC testbeds is ongoing.
● The CW group will construct a curated list of workflow requirements

on a per-experiment basis to determine specific and overlapping
needs in the HEP community.

● Managed extreme heterogeneity of applications and resources concurrently
○ Application: Type of task: executable/function

■ Size and duration of tasks: 1-N cores/GPUs
■ Type of parallelism: thread/process, OpenMP, MPI

○ Resource: Type, scale, cost of resources used by tasks
■ Edge-to-Exascale: Computing across the heterogeneous continuum

● Redefine what it means to be performant!
○ Measure & optimize collective performance, not single task performance

■ More than makespan optimization; non-traditional trade-offs
○ Complex interplay of traditional computational & scientific performance

■ AI-coupled-HPC WF effective performance > 10N
 traditional WF

○

HPC-Workflows: Challenges at Scale

1
4

● Different layers of resilience:
○ Management system itself;

■ Control the state of its components and the number of instances per
each component;

○ Management of allocated resources;
■ Track the resources performance and adjust their availability for

payload placement;
○ Management of execution processes (i.e., computing tasks).

■ Trade-off between level of resilience and throughput

○ Makespan optimization under performance uncertainty

HPC-Workflows: Challenges at Scale (2)

1
5

