ATLAS S\&C toward the HL-LHC challenges

HEP-CCE All Hands Meeting

12 April 2023

Alessandro Di Girolamo (CERN) and Zach Marshall (LBNL)

- We are just entering the second year of Run 3
- Run 3 will end in 2025
- HL-LHC will start in 2029
- Run 4: 2029-2032, Run 5: 2035-2038. Formal plan extends beyond 2040.

The Physics challenge: Run 3

Our "interesting" data set size is measured in fb^{-1}

- Trigger rate (incl. delayed) ~ 3.5 kHz
- RAW size ~ 1.3 MB/ev
- Pile up ~ 60
- ~ 30B MC events/year

Our "interesting" data set size is measured in fb^{-1}

- Trigger rate ~ 10 kHz
- RAW size ~ $4 \mathrm{MB} / \mathrm{ev}$
- Pile up ~ 140+
- ~ 150B MC events/year

The Computing Challenges

- We hope you're all familiar with these plots by now!
- Model updated in Spring 2023 - no significant change to these projections
- Need for major R\&D (or budgetary) effort to achieve HL-LHC physics potential
- We have defined Conservative R\&D and Aggressive R\&D scenarios
- N.b. some projects for which we were/are not able to estimate the concrete impact are not (yet) included (e.g. GPU usage, FastChain simulation)
- The black lines indicate the "flat budget" of 10\% (lower line) and 20\% (upper line)

Getting There from Here

- ATLAS S\&C HL-LHC Roadmap

- Defines milestones and deliverables to get to the HL-LHC successfully
- R\&D is ongoing
- We've just spent some time discussing and reviewing "demonstrator" prototype projects for the HL-LHC
- We see already lot of engagement!
- Integration and validation will require time
- Late arriving R\&D is risky
- In 2025 we expect to have in the TDR a detailed path to HL-LHC data taking
- For example, accelerators: Yes or No
- This is also the timeline for a decision from our trigger group on accelerators

Pain Points (Processing / CPU)

- No single application dominates CPU in 2031
- That's good news and bad news for us
- No silver bullet to "solving" our resource crunch
- Also not fatal if one workflow isn't improved
- Can diversify our R\&D - lots of interesting projects!
- Lots of effort and ideas around these problems
- Very happy with the diverse portfolio HEP-CCE is investing in; many of the key problems are covered
- Biggest (by some metric) "CPU" efforts currently in:
- Faster simulation (Geant4 optimization / on GPU, better fast simulation, FastChain...)
- ML/accelerator-based charged particle tracking
- New approaches to analysis
- Effort spread around reasonably well
- Other ML/accelerator approaches to reconstruction, event generation, etc
- Cleaning up "waste" (e.g. unused / failed production)

ATLAS Preliminary
2022 Computing Model - CPU: 2031, Aggressive R\&D

ATLAS Preliminary
2022 Computing Model - Disk: 2031, Aggressive R\&D

- Several ongoing disk efforts as well
- RNTuple (of course)
- Lossy compression: difficulty is not the infrastructure but the physics validation
- Augmentation to support sparse additional data
- Constant revision / review of file contents
- Alternative compression/settings - delicate balance
- More aggressive deletion / recreation
- Anticipating our PHYSLITE format will serve a wide variety of analyses in Run 4
- The disk model is driven by "remnants": how many analyses don't use PHYSLITE, and what they use instead. This is where the hard work goes!
- Very successful model for data distribution
- Our "data carousel" uses tape effectively as a warm storage medium, reducing disk needs
- Already have a mechanism for replication of popular datasets, and expecting to continue this way

ATLAS Preliminary
2022 Computing Model - CPU: 2031, Aggressive R\&D

ATLAS Preliminary
2022 Computing Model - Disk: 2031, Aggressive R\&D

- We have benefited enormously from HPC systems (especially since 2021)

High-Performance Computing

XPERIMENT

- We have benefited enormously from HPC systems (especially since 2021)
- Recently allowed us to cross 1 M simultaneous cores for the first time

High-Performance Computing

- We have benefited enormously from HPC systems (especially since 2021)
- Recently allowed us to cross 1M simultaneous cores for the first time
- We have a nice mixture of "transparent" and "complex" HPCs today
- Transparent: Mare Nostrum, Norway, Vega, Karolina, CSCS, (Leonardo), ...
- Complex: Cori/Perlmutter, Toubkal, ...

- We need more compute for the HL-LHC

- We need to keep our resources diverse
- Expect HPCs to be an important component
- We do not need to run everywhere!!
- Even a small HPC today could deliver a huge fraction of our required cycles
- Vega is barely top 100 and is easily our \#1 site and we only use the CPU partition
- This means we can find the most friendly HPC machines to use
- Corollary: we don't need to run on all hardware
- We are validating ARM now and have some GPU developments in the pipeline
- It appears likely that ARM+CPU might already be sufficient for us
- Portability languages will be key for us to port to other hardware
- We haven't seen a lot of visible impact (yet?) from some HEP-CCE projects
- Maybe that's natural - HL-LHC isn't here yet, and these things are hard to deploy
- OTOH, several ATLAS members deeply involved in HEP-CCE and doing great things
- Our Roadmap includes a decision about (portability) languages in 2024
- This is very much because we expect to learn from HEP-CCE's recommendations in 2023
- ATLAS members are deeply involved in this effort; we don't think you're missing anything
- We are aware of the IOS activities (and ATLAS members are involved)
- We haven't seen a killer use-case for e.g. the HDF5 writing yet
- When we talk about "I/O limiting" in our applications, it is rare that we really mean the I/O layer itself. Usually we mean I/O+decompression+ROOT overheads+access overheads, and recent measurements indicate that these last two are the most important to us.
- Offloading (e.g. to GPU) data efficiently is an ongoing project in our Roadmap
- Perhaps looking for further overlap/collaboration here would be useful
- Intelligent data compression is certainly interesting to us
- Without thinking deeply about it:
- Metadata is an ongoing fight for ATLAS in a variety of ways. Perhaps there's some opportunity here for collaborationemarmonization_fommon tooling?
- It isn't clear to us what benefit object store R\&D can bring
- We're happy to learn more, of course
- We expect to run significant LO, NLO, and (hopefully) NNLO generation in HL-LHC
- Accelerating any of these is welcome; we will be happy to test prototypes when ready
- Our biggest (in CPU) sample is NLO Sherpa V+jets, followed by Powheg NLO ttbar
- We generate many different samples with MadGraph (more configurations than Sherpa)
- It would not be shocking (to me at least) if this were to remain the case in the HL-LHC
- GPU-based Geant4 would be a wonderful development
- Recall that GeantV encountered serious difficulties when it got to hadronic physics, and neither Celeritas nor Adept has gotten there yet. Attacking this issue is important.
- We are working on various steps to prepare ourselves (e.g. geometry offloading)
- We are aware of some of the FuncX/Parsl work
- We don't see a big potential impact for this yet but are happy to learn more and discuss it
- Significant interest in power / carbon issues worldwide
- Is there interest in a HEP-CCE project in that space?
- Still some time to recommend best practices before big purchases for HL-LHC
- ATLAS is facing interesting, difficult, but solvable software and computing challenges for the HL-LHC
- One of the biggest challenges not mentioned here is supporting and retaining skilled developers - your help is always welcome!
- Now is a great time for R\&D, demonstrators, prototypes, and pilot projects!
- From experience we know how long and painful integration in our frameworks and full physics validation are: we should take this into consideration to manage our expectations!
- Focusing our efforts on common, shared objectives is paramount
- The way in which we work can make the difference between success and failure!
- Fragmented efforts are lethal - and ineffective
- This was a "quick" overview of some of the challenges
- Much more in our HL-LHC Roadmap, and we are happy to discuss further with anyone interested in contributing!

E．LS

- We have to keep on running the experiment while we are planning for major upgrades
- As Karl Jakobs said, "We are building a new ATLAS while we are running ATLAS"
- Failing is not an option
- Lot of efforts that need to go into non-R\&D work (or at the boundaries)
- Maintaining our current software
- Updates to database infrastructure
- Improvements in metadata handling
- Upgrade geometry and digitization
- SW performance improvements
- Re-tuning of Fast and G4 simulation for Run 4 new detector, and re-tuning reco
- Distributed computing: lots of fundamental stuff, building blocks (tokens, OS, network, storage technologies)
- R\&D projects are on top of this:
- Balance (between R\&D and "business as usual") is key
- And we need to have a strong focus on "impact"
- Interesting \& useful discussion of energy consumption during WLCG Workshop
- Discussions dominated up to now by ATLAS members + sites
- Happy to engage further on energy consumption, power, C02, etc
- Various positive steps in terms of energy reduction
- ATLAS full (Geant4) simulation fully validated on ARM (and now working on evgen+reco)
- Clearly defined list of priorities for sites in case of power-shedding needs (switching off disk should be the last resort)

CERN Hardware cost
$\mathrm{CHF} / \mathrm{GB}$
Price/performance evolution of installed disk server storage (CERN)

$$
\text { Last } 5 \text { year average improvement factor }=1.22
$$

20052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030

$$
\text { Last } 5 \text { year average improvement factor }=1.28
$$

Challenges: Tracking

physics-driven optimizations of the algorithms

- We should be investing in some of these optimizations now to avoid wasted code optimizations
- N.B. physicists will find ways to use the CPU again!!
- Charged particle tracking is a great example of (constantly) hot R\&D
- It is slow in the HL-LHC - it's always been one of the heavier parts of the reconstruction
- Lots of work was done in preparation for Run 3
- The vast majority of the speed up came from

