ATLAS S&C toward the HL-LHC challenges

HEP-CCE All Hands Meeting

12 April 2023

Alessandro Di Girolamo (CERN) and Zach Marshall (LBNL)

LHC schedule

- We are just entering the second year of Run 3
 - o Run 3 will end in 2025
- HL-LHC will start in 2029
 - Run 4: 2029–2032, Run 5: 2035–2038. Formal plan extends beyond 2040.

The Physics challenge: Run 3

Our "interesting" data set size is measured in fb⁻¹

- Trigger rate (incl. delayed)
 ~ 3.5 kHz
- RAW size ~ 1.3 MB/ev
- Pile up ~ 60
- ~ 30B MC events/year

The Physics challenge: HL-LHC (Run 4)

Our "interesting" data set size is measured in fb⁻¹

- Trigger rate ~ 10 kHz
- RAW size ~ 4 MB/ev
- Pile up ~ 140+
- ~ 150B MC events/year

The Computing Challenges

- We hope you're all familiar with these plots by now!
 - Model updated in Spring 2023 no significant change to these projections
- Need for major R&D (or budgetary) effort to achieve HL-LHC physics potential
 - We have defined Conservative R&D and Aggressive R&D scenarios
 - N.b. some projects for which we were/are not able to estimate the concrete impact are not (yet) included (e.g. GPU usage, FastChain simulation)
 - The black lines indicate the "flat budget" of 10% (lower line) and 20% (upper line)

Getting There from Here

- ATLAS S&C <u>HL-LHC Roadmap</u>
- Defines milestones and deliverables to get to the HL-LHC successfully
- R&D is ongoing
 - We've just spent some time discussing and reviewing "demonstrator" prototype projects for the HL-LHC
 - We see already lot of engagement!
- Integration and validation will require time
 - Late arriving R&D is risky
- In 2025 we expect to have in the TDR a detailed path to HL-LHC data taking
 - o For example, accelerators: Yes or No
 - This is also the timeline for a decision from our trigger group on accelerators

Pain Points (Processing / CPU)

ATLAS

- No single application dominates CPU in 2031
- That's good news and bad news for us
 - No silver bullet to "solving" our resource crunch
 - Also not fatal if one workflow isn't improved
 - Can diversify our R&D lots of interesting projects!
- Lots of effort and ideas around these problems
 - Very happy with the diverse portfolio HEP-CCE is investing in; many of the key problems are covered
- Biggest (by some metric) "CPU" efforts currently in:
 - Faster simulation (Geant4 optimization / on GPU, better fast simulation, FastChain...)
 - ML/accelerator-based charged particle tracking
 - New approaches to analysis
- Effort spread around reasonably well
 - Other ML/accelerator approaches to reconstruction, event generation, etc
 - Cleaning up "waste" (e.g. unused / failed production)

Pain Points (Storage)

ATLAS

- Several ongoing disk efforts as well
 - RNTuple (of course)
 - Lossy compression: difficulty is not the infrastructure but the physics validation
 - Augmentation to support sparse additional data
 - Constant revision / review of file contents
 - Alternative compression/settings delicate balance
 - More aggressive deletion / recreation
- Anticipating our PHYSLITE format will serve a wide variety of analyses in Run 4
 - The disk model is driven by "remnants": how many analyses don't use PHYSLITE, and what they use instead. This is where the hard work goes!
- Very successful model for data distribution
 - Our "data carousel" uses tape effectively as a warm storage medium, reducing disk needs
 - Already have a mechanism for replication of popular datasets, and expecting to continue this way

 Ale Di Girolamo (CERN) & Zach Marshall (LBNL) 12 April 2023

High-Performance Computing

We have benefited enormously from HPC systems (especially since 2021)

High-Performance Computing

- We have benefited enormously from HPC systems (especially since 2021)
- Recently allowed us to cross 1M simultaneous cores for the first time

High-Performance Computing

- We have benefited enormously from HPC systems (especially since 2021)
- Recently allowed us to cross 1M simultaneous cores for the first time
- We have a nice mixture of "transparent" and "complex" HPCs today
 - o Transparent: Mare Nostrum, Norway, Vega, Karolina, CSCS, (Leonardo), ...

Complex: Cori/Perlmutter, Toubkal, ...

	max	avg ~
Pledges	3.59 Mil	3.37 Mil
Vega_MCORE	2.61 Mil	1.02 Mil
Vega	1.96 Mil	600 K
 praguelcg2_Karolina_MCORE 	899 K	134 K
 Vega_FULLNODE 	1.21 Mil	86.8 K
 NERSC_Cori_p2_mcore 	582 K	70.8 K
- CSCS-LCG2	109 K	67.3 K
- RIVR.UM	127 K	58.4 K
 NERSC_Perlmutter 	4.19 Mil	51.0 K
 Vega_largemem 	238 K	36.6 K
pic_MareNostrum4	197 K	35.3 K
- LRZ-LMU_MUC	226 K	28.7 K
- NSC	36.5 K	25.9 K
 IFIC_MareNostrum4 	55.3 K	21.6 K
 CSCS-LCG2-ALPS 	108 K	18.1 K
 TACC-FRONTERA-UCORE 	203 K	16.4 K
- HPC2N	43.5 K	16.3 K
- CERN-HPC	37.3 K	13.1 K
 praguelcg2_Barbora_MCORE 	114 K	12.2 K
pic_MareNostrum4_Test	158 K	12.0 K
TOKYO_HPC	394 K	10.4 K
 UAM_MareNostrum4 	50.0 K	10.1 K
 praguelcg2_Salomon_MCORE 	79.8 K	9.95 K
 LRZ-LMU_MUC_ES 	113 K	9.07 K
 CERN-HPC_ES 	35.8 K	6.83 K
 ALCF_Theta 	138 K	6.37 K
■ UM6P	34.7 K	3.69 K
 DESY-HH_HPC 	14.3 K	3.60 K
 MPPMU-DRACO_MCORE 	43.2 K	3.19 K

HPC and Heterogeneity Philosophy

- We need more compute for the HL-LHC
- We need to keep our resources diverse
 - Expect HPCs to be an important component
- We do **not** need to run everywhere!!
 - Even a small HPC today could deliver a huge fraction of our required cycles
 - Vega is barely top 100 and is easily our #1 site —
 and we only use the CPU partition
 - This means we can find the most friendly HPC machines to use
- Corollary: we don't need to run on all hardware
 - We are validating ARM now and have some GPU developments in the pipeline
 - It appears likely that ARM+CPU might already be sufficient for us
 - Portability languages will be key for us to port to other hardware

HEP-CCE Project Questions / Comments (I)

- We haven't seen a lot of visible impact (yet?) from some HEP-CCE projects
- Maybe that's natural HL-LHC isn't here yet, and these things are hard to deploy
 - OTOH, several ATLAS members deeply involved in HEP-CCE and doing great things
- Our <u>Roadmap</u> includes a decision about (portability) languages in 2024
 - This is very much because we expect to learn from HEP-CCE's recommendations in 2023
 - ATLAS members are deeply involved in this effort; we don't think you're missing anything
- We are aware of the IOS activities (and ATLAS members are involved)
 - We haven't seen a killer use-case for e.g. the HDF5 writing yet
 - When we talk about "I/O limiting" in our applications, it is *rare that we really mean the I/O layer itself*. Usually we mean I/O+decompression+ROOT overheads+access overheads, and recent measurements indicate that these last two are the most important to us.
- Offloading (e.g. to GPU) data efficiently is an ongoing project in our Roadmap
 - o Perhaps looking for further overlap/collaboration here would be useful
- Intelligent data compression is certainly interesting to us
- Without thinking deeply about it:
 - o Metadata is an ongoing fight for ATLAS in a variety of ways. Perhaps there's some opportunity here for collaboration harmonization common tooling?

HEP-CCE Project Questions / Comments (II)

- It isn't clear to us what benefit object store R&D can bring
 - We're happy to learn more, of course
- We expect to run significant LO, NLO, and (hopefully) NNLO generation in HL-LHC
 - Accelerating any of these is welcome; we will be happy to test prototypes when ready
 - Our biggest (in CPU) sample is NLO Sherpa V+jets, followed by Powheg NLO ttbar
 - We generate many different samples with MadGraph (more configurations than Sherpa)
 - It would not be shocking (to me at least) if this were to remain the case in the HL-LHC
- GPU-based Geant4 would be a wonderful development
 - Recall that GeantV encountered serious difficulties when it got to hadronic physics, and neither Celeritas nor Adept has gotten there yet. Attacking this issue is important.
 - We are working on various steps to prepare ourselves (e.g. geometry offloading)
- We are aware of some of the FuncX/Parsl work
 - We don't see a big potential impact for this yet but are happy to learn more and discuss it

Bonus Point(s)

- Significant interest in power / carbon issues worldwide
 - Is there interest in a HEP-CCE project in that space?
 - Still some time to recommend best practices before big purchases for HL-LHC

Summary

- ATLAS is facing interesting, difficult, but solvable software and computing challenges for the HL-LHC
 - One of the biggest challenges not mentioned here is supporting and retaining skilled developers — your help is always welcome!
- Now is a great time for R&D, demonstrators, prototypes, and pilot projects!
 - From experience we know how long and painful integration in our frameworks and full physics validation are: we should take this into consideration to manage our expectations!
- Focusing our efforts on common, shared objectives is paramount
 - The way in which we work can make the difference between success and failure!
 - Fragmented efforts are lethal and ineffective
- This was a "quick" overview of some of the challenges
 - Much more in our <u>HL-LHC Roadmap</u>, and we are happy to discuss further with anyone interested in contributing!

Extras

The ATLAS detector now

The ATLAS detector in HL-LHC

The ATLAS Collaboration

Some caveats: lots of "business as usual"

- We have to keep on running the experiment while we are planning for major upgrades
 - As Karl Jakobs said, "We are building a new ATLAS while we are running ATLAS"
 - Failing is not an option
- Lot of efforts that need to go into non-R&D work (or at the boundaries)
 - Maintaining our current software
 - Updates to database infrastructure
 - Improvements in metadata handling
 - Upgrade geometry and digitization
 - SW performance improvements
 - Re-tuning of Fast and G4 simulation for Run 4 new detector, and re-tuning reco
 - Distributed computing: lots of fundamental stuff, building blocks (tokens, OS, network, storage technologies)
- R&D projects are on top of this:
 - Balance (between R&D and "business as usual") is key
 - And we need to have a strong focus on "impact"

Power and Energy

- Interesting & useful discussion of <u>energy consumption during WLCG Workshop</u>
 - Discussions dominated up to now by ATLAS members + sites
- Happy to engage further on energy consumption, power, C02, etc.
- Various positive steps in terms of energy reduction
 - ATLAS full (Geant4) simulation fully validated on ARM (and now working on evgen+reco)
 - Clearly defined list of priorities for sites in case of power-shedding needs (switching off disk should be the last resort)

CERN Hardware cost

Challenges: Tracking

- Charged particle tracking is a great example of (constantly) hot R&D
 - It is slow in the HL-LHC it's always been one of the heavier parts of the reconstruction
- Lots of work was done in preparation for Run 3
 - The vast majority of the speed up came from physics-driven optimizations of the algorithms
 - We should be investing in some of these optimizations now to avoid wasted code optimizations
 - N.B. physicists will find ways to use the CPU again!!

