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Markkanen et al. Cosmological Aspects of Higgs Vacuum Metastability

FIGURE 7 | Stability diagram of the Standard Model vacuum state in the pole

masses Mt, Mh of the top quark and Higgs boson, respectively. Ellipses show

the 1σ , 2σ , 3σ confidence intervals for Mt and Mh around their central values

from Tanabashi et al. (2018). In the green region, the current vacuum is

absolutely stable, in the yellow region it satisfies the bound (5.9), and in the red

region it is so unstable that it would not have survived until the present day.

The instability boundary includes gravitational backreaction (Rajantie and

Stopyra, 2017) and is shown for ξ = 0 and ξ = ±1000 of the non-minimal

curvature coupling. The blue dashed line shows the instability bound (5.62)

obtained by taking the thermal history of the Universe into account (Delle Rose

et al., 2016) and assuming a high reheat temperature TRH = 1016 GeV. For

lower reheat temperatures, the instability bound becomes weaker, and

approaches the red dotted line as TRH → 0.

what we observe, no matter how low the probability is a priori.
One can therefore argue that observations do not require 〈N 〉 !
1. However, the anthropic argument does not rule out bubbles
hitting us in the future, and therefore, if the Universe survives for
a further period of time, that imposes a bound that is not subject
to the anthropic principle. For this, the quantity that matters is
the time derivative of the expected number of bubbles,

d〈N 〉
dt

= 4π

a0
$0

∫ η0

ηini

dη a(η)4(η0 − η)2. (5.11)

This imposes constraints that are numerically weaker but cannot
be avoided by anthropic reasoning. To be concrete, one can
carry out an experiment by waiting for a period of time texp, for
example 1 year. If, at the end of the time period, the experimenter
has not been hit by a bubble wall, this gives a constraint

texp
d〈N 〉
dt

! 1. (5.12)

For the post-inflationary Universe this is

texp
d〈N 〉
dt

= (texpH0)× 4.91$0H
−4
0 , (5.13)

and for texp = 1yr, one obtains the bound

$0 ! 2.9× 1010H4
0 , or B " 520. (5.14)

This is weaker than Equation (5.9), but because of the very strong
dependence of$0 on the top andHiggsmasses, it does not change
the stability constraints on them significantly.

5.3. Inflation
Although most of the spacetime volume of our past lightcone
comes from the late times, the vacuum decay rate $(a) was much
higher in the very early Universe. Depending on the cosmological
scenario, it can be high enough to violate the bound (5.7), and this
can be used to constrain theories.

The earliest stage in the evolution of the Universe that
we have evidence for is inflation, a period of accelerating
expansion, which made the Universe spatially flat, homogeneous
and isotropic and also generated the initial seeds for structure
formation. In simplest models of inflation, the energy density
driving it is in the form of the potential energy V(φ) of a
scalar field φ known as the inflaton. The inflaton field is nearly
homogeneous, and satisfies the equation of motion

φ̈ + 3Hφ̇ + V ′(φ) = 0. (5.15)

During inflation the potential satisfies the slow-roll conditions,

ε ≡
M2

P

2

(

V ′

V

)2

(1, and −1(η ≡ M2
P

(

V ′′

V

)

(1. (5.16)

These conditions guarantee the existence of a solution in which
the first term in Equation (5.15) is subdominant, and the inflaton
field rolls slowly down the potential V(φ). As a consequence, the
energy density ρ ≈ V(φ) and the Hubble rate are approximately
constant.

The Hubble rate during inflation, Hinf, is largely unknown.
Observationally it is constrained from above by the limits
on primordial B-mode polarization in the cosmic microwave
background radiation. This gives an upper bound r < 0.09
on the tensor-to-scalar ratio (Ade et al., 2016), which implies
Hinf ! 3.3 × 10−5MP ≈ 8.0 × 1013 GeV at the time when
the observable scales left the horizon. In a realistic inflationary
model, the Hubble rate decreases with time, and would therefore
be lower at the end of inflation. Although there are models in
which the Hubble rate is well below the tensor bound, it is
generally expected to be close to it, and in the simplest single-
field inflation models it even exceeds it. It is therefore considered
to be likely that the Hubble rate was significantly higher than the
Higgs massmH ≈ 125 GeV.

The minimal inflationary model is Higgs inflation (Bezrukov
et al., 2008), in which the non-minimal curvature coupling of the
Higgs field is large, ξ ∼ −49000

√
λ. This allows it to play the

role of the inflaton, without the need for a separate inflaton field.
During inflation, the Higgs field has a large value ϕ ∼ MP/|ξ |,
which means that the existence of a negative-energy minimum
would appear to pose a problem for the scenario, because if the
Higgs field gets trapped there, it would lead to a rapid collapse of
the Universe instead of inflation. However, inclusion of higher-
dimensional operators and finite temperature effects can avoid
this problem (Bezrukov et al., 2015). Of course, if the actual
top and Higgs masses lie in the stable region (see Figure 7), no
problem arises. Furthermore, if they are just below the stability
boundary, the effective Higgs potential would have an inflection
point which would allow the scenario known as critical Higgs
inflation (Bezrukov and Shaposhnikov, 2014; Hamada et al.,

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 22 December 2018 | Volume 5 | Article 40
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Will we all die because of the Higgs field?

Tamas Almos Vami

1 Introduction

The goal of fundamental physics is to find the main concepts that describe the whole Universe. The state-of-
the-art understanding of the world is based on the theory of gravitation, as described in the frame of general
relativity, and the Standard Model of particle physics (SM).

The SM is a quantum field theory, that can be written in a concise way on a mug (Figure 1). A field is
an abstract quantity that assigns a certain value to every point in spacetime, and a quantum field does this
in a way that it respects the laws of quantum mechanics and special relativity, too. It is important to note
that every particle in the SM is an excitation of their respective quantum field.

Figure 1: A mug from CERN containing the main equation from the Standard Model. (Source: https:
//visit.cern/sites/visits.web.cern.ch/files/images/image/shop-09.jpg)

2 How breaking a symmetry could be useful

One of the main feature of the SM is the Brout-Englert-Higgs mechanism. It assumes a so called Higgs field
(denoted by �) which, below certain extremely high temperatures, goes through a process called spontaneous
symmetry breaking and by this it generates masses for the force carrying particles.

The situation can be analogous to a ball on a hill. The ball on the top of the hill is unstable and will
eventually fall down to the valley. The potential valley of the Higgs field is described by the term V (�) in
Figure 1 and it has the form of

V (�) = µ2|�|2 + �|�|4

where µ2 < 0 is proportional to the mass of the Higgs boson and the � > 0 is the self-coupling. This potential
is usually referred as the Mexican hat potential and it is plotted in Figure 2.

Figure 2: Higgs potential in the Standard Model. (Source: my own figure)

1
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The Lagrangian of the SM

10

, same as alwaysℒ = T − V

https://visit.cern/shop
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an abstract quantity that assigns a certain value to every point in spacetime, and a quantum field does this
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One of the main feature of the SM is the Brout-Englert-Higgs mechanism. It assumes a so called Higgs field
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The SM Higgs potential is:

H

The universe is in an initial ‘symmetric’ state 

µp
�
= v = 246 GeV

But is this the actual potential realized in nature?

What have we measured?

V(ϕ)

ϕ

H

But it has to go into the lower-energy state, breaking the symmetry

This process creates new interactions, and creates the SM we know:
“Electroweak symmetry breaking”



M. Swiatlowski (TRIUMF) March 31, 2023

Measuring the Potential

12



M. Swiatlowski (TRIUMF) March 31, 2023

Measuring the Potential

12

V (�) = �µ2�2 + ��4

The SM Higgs potential is:

µp
�
= v = 246 GeV



M. Swiatlowski (TRIUMF) March 31, 2023

Measuring the Potential

12

V (�) = �µ2�2 + ��4

The SM Higgs potential is:

We live in the minimum:
µp
�
= v = 246 GeV



M. Swiatlowski (TRIUMF) March 31, 2023

Measuring the Potential

12

V = V0 + �v2h2 + �vh3 + ...

= V0 +
1

2
m2

H
h2 +

m2
h

2v2
vh3 + ...

V (�) = �µ2�2 + ��4

The SM Higgs potential is:

We live in the minimum:
µp
�
= v = 246 GeV



M. Swiatlowski (TRIUMF) March 31, 2023

Measuring the Potential

12

V = V0 + �v2h2 + �vh3 + ...

= V0 +
1

2
m2

H
h2 +

m2
h

2v2
vh3 + ...

V (�) = �µ2�2 + ��4

The SM Higgs potential is:

We live in the minimum:
µp
�
= v = 246 GeV

This is a mass term!



M. Swiatlowski (TRIUMF) March 31, 2023

Measuring the Potential

12

V = V0 + �v2h2 + �vh3 + ...

= V0 +
1

2
m2

H
h2 +

m2
h

2v2
vh3 + ...

V (�) = �µ2�2 + ��4

The SM Higgs potential is:

We live in the minimum:
µp
�
= v = 246 GeV

This is a mass term!

So what we’ve measured is the first term in this series



M. Swiatlowski (TRIUMF) March 31, 2023

Measuring the Potential

12

V = V0 + �v2h2 + �vh3 + ...

= V0 +
1

2
m2

H
h2 +

m2
h

2v2
vh3 + ...

V (�) = �µ2�2 + ��4

The SM Higgs potential is:

We live in the minimum:
µp
�
= v = 246 GeV

This is a mass term!

So what we’ve measured is the first term in this series

What’s next?
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= V0 +
1

2
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H
h2 +

m2
h

2v2
vh3 + ...

Quadratic terms are masses

The SM predicts di-Higgs production!
We can measure the potential

by measuring this coupling

Cubic terms are interactions

Our expansion describes 
a Higgs self-interaction

λSM
HHH =

m2
h

2υ2

This lets us draw this diagram

κλ =
λHHH

λSM
HHH



M. Swiatlowski (TRIUMF) March 31, 2023

Not Quite So Easy…

14



M. Swiatlowski (TRIUMF) March 31, 2023

Not Quite So Easy…

14



M. Swiatlowski (TRIUMF) March 31, 2023

Not Quite So Easy…

14

This coupling is what we want 
to measure



M. Swiatlowski (TRIUMF) March 31, 2023

Not Quite So Easy…

14

This coupling is what we want 
to measure

This tells us about the shape 
of the Higgs potential



M. Swiatlowski (TRIUMF) March 31, 2023

Not Quite So Easy…

14

This coupling is what we want 
to measure

This tells us about the shape 
of the Higgs potential

This process has the same final state,
but  doesn’t appear: no information 

about the Higgs potential
κλ



M. Swiatlowski (TRIUMF) March 31, 2023

Not Quite So Easy…

14

This coupling is what we want 
to measure

This tells us about the shape 
of the Higgs potential

This process has the same final state,
but  doesn’t appear: no information 

about the Higgs potential
κλ

These two processes destructively interfere in the SM,
leading to very low cross section: 500x rarer than single Higgs



M. Swiatlowski (TRIUMF) March 31, 2023

Not Quite So Easy…

14

This coupling is what we want 
to measure

This tells us about the shape 
of the Higgs potential

This process has the same final state,
but  doesn’t appear: no information 

about the Higgs potential
κλ

These two processes destructively interfere in the SM,
leading to very low cross section: 500x rarer than single Higgs

Di-Higgs production is a rare process: perfect for our large datasets!
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Measuring these terms
helps us map out the

SM’s prediction for the
Higgs potenial

But what if we see something completely different?
What if ?κλ = 3
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V(ϕ)

ϕ

But other shapes of the potential still allow for 
Electroweak Symmetry Breaking

They still lead to the same Higgs mass

What physics could this lead to?

We have a prediction for the shape from the SM…
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What happens as we increase the temperature:
Go back in time towards the Big Bang

Both the SM, and modified models, undergo a phase transition
The SM has a smooth transition, while modified models have a ‘barrier’

Modified models lead to out of equilibrium dynamics 
in the early universe

T < TC

T = TC
T = TC

T > TC

T > TC

https://meetings.triumf.ca/indico/event/116/session/8/contribution/33/material/slides/0.pdf
https://iopscience.iop.org/book/978-1-6817-4457-5
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The matter/anti-matter problem is a broken symmetry

We’ve already measured one broken symmetry: 
this is electroweak symmetry breaking

BSM models that enable this are referred 
to as Electroweak Baryogenesis

What if these two broken symmetries are related?

Can the electroweak phase transition remove 
anti-matter from the universe?
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As the universe cools, the potential changes…



M. Swiatlowski (TRIUMF) March 31, 2023

Electroweak Baryogenesis

19

ϕ ≠ 0

ϕ ≠ 0

q q̄

q

q̄

q

q̄

q

q̄

q

q̄

q

q̄

ϕ = 0

Step 1: At , pockets of EWSB form via tunnelingTC

V(ϕ)

ϕ

H

Tunneling
H



M. Swiatlowski (TRIUMF) March 31, 2023

Electroweak Baryogenesis

19

ϕ ≠ 0

ϕ ≠ 0

q q̄

q

q̄

q

q̄

q

q̄

q

q̄

q

q̄

ϕ = 0

V(ϕ)

ϕ

H

Tunneling
H

Matter and anti-matter have different transmission/reflection
probabilities at the boundary

Step 2: CP Violation (NB: requires BSM) creates baryon flux
due to interactions at the boundary



M. Swiatlowski (TRIUMF) March 31, 2023

Electroweak Baryogenesis

19

ϕ ≠ 0

ϕ ≠ 0

q

q̄

q

q̄

q

q̄

q

q̄

q

q̄

q

q̄

ϕ = 0

V(ϕ)

ϕ

H

Tunneling
H

Matter and anti-matter have different transmission/reflection
probabilities at the boundary

Step 2: CP Violation (NB: requires BSM) creates baryon flux
due to interactions at the boundary



M. Swiatlowski (TRIUMF) March 31, 2023

Step 3: High-temperature baryon-violating processes (sphelarons)
at  remove anti-baryonsϕ = 0

Electroweak Baryogenesis

19

ϕ ≠ 0

ϕ ≠ 0

q

ℓ

q

q

q

q
q

ϕ = 0

ℓ

ℓ

ℓ
ℓ

ℓ

V(ϕ)

ϕ

H

Tunneling
H

These processes don’t occur in the  state: electroweak symmetry breaking 
leads to matter symmetry breaking

ϕ ≠ 0

q̄

q̄

q̄ ℓ

ℓ

ℓ

S (+h . c.)



M. Swiatlowski (TRIUMF) March 31, 2023

Electroweak Baryogenesis

19

V(ϕ)

ϕ
H

q

ℓ

q

q

q

q
q

ϕ ≠ 0

ℓ

ℓ

ℓ
ℓ

ℓ

Step 4: Universe continues to cool to fully broken
symmetry, but anti-baryons have been removed



M. Swiatlowski (TRIUMF) March 31, 2023

The Higgs Potential and EWBG

20



M. Swiatlowski (TRIUMF) March 31, 2023

The Higgs Potential and EWBG

20

The shape of the Higgs potential 
at  is critical: needs to be a 
first-order phase transition
TC

V(ϕ)

ϕ



M. Swiatlowski (TRIUMF) March 31, 2023

The Higgs Potential and EWBG

20

ϕ ≠ 0

ϕ ≠ 0

q q̄

q

q̄

q

q̄

q

q̄

q

q̄

q

q̄

ϕ = 0

The shape of the Higgs potential 
at  is critical: needs to be a 
first-order phase transition
TC

Can’t smoothly crossover the 
whole universe at once:

need ‘bubbles’ of broken symmetry

V(ϕ)

ϕ



M. Swiatlowski (TRIUMF) March 31, 2023

The Higgs Potential and EWBG

20

ϕ ≠ 0

ϕ ≠ 0

q q̄

q

q̄

q

q̄

q

q̄

q

q̄

q

q̄

ϕ = 0

The shape of the Higgs potential 
at  is critical: needs to be a 
first-order phase transition
TC

Can’t smoothly crossover the 
whole universe at once:

need ‘bubbles’ of broken symmetry

We need a modified Higgs potential
to enable this first order transition:

 could be between 1.2 and 6
(very roughly!)

κλ

V(ϕ)

ϕ



M. Swiatlowski (TRIUMF) March 31, 2023

The Higgs Potential and EWBG

20

ϕ ≠ 0

ϕ ≠ 0

q q̄

q

q̄

q

q̄

q

q̄

q

q̄

q

q̄

ϕ = 0

The shape of the Higgs potential 
at  is critical: needs to be a 
first-order phase transition
TC

Can’t smoothly crossover the 
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We need a modified Higgs potential
to enable this first order transition:

 could be between 1.2 and 6
(very roughly!)
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And we could see this
at the LHC with di-Higgs!
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If the only field in the universe was the Higgs, an SM-like
potential would be stable: our minimum is the global minimum

Quantum corrections (i.e. interactions with other particles) mean
that the effective shape can be quite different 

Even in the SM, our universe might only be meta-stable: 
able to tunnel to a lower energy state!

Markkanen et al. Cosmological Aspects of Higgs Vacuum Metastability

FIGURE 7 | Stability diagram of the Standard Model vacuum state in the pole

masses Mt, Mh of the top quark and Higgs boson, respectively. Ellipses show

the 1σ , 2σ , 3σ confidence intervals for Mt and Mh around their central values

from Tanabashi et al. (2018). In the green region, the current vacuum is

absolutely stable, in the yellow region it satisfies the bound (5.9), and in the red

region it is so unstable that it would not have survived until the present day.

The instability boundary includes gravitational backreaction (Rajantie and

Stopyra, 2017) and is shown for ξ = 0 and ξ = ±1000 of the non-minimal

curvature coupling. The blue dashed line shows the instability bound (5.62)

obtained by taking the thermal history of the Universe into account (Delle Rose

et al., 2016) and assuming a high reheat temperature TRH = 1016 GeV. For

lower reheat temperatures, the instability bound becomes weaker, and

approaches the red dotted line as TRH → 0.

what we observe, no matter how low the probability is a priori.
One can therefore argue that observations do not require 〈N 〉 !
1. However, the anthropic argument does not rule out bubbles
hitting us in the future, and therefore, if the Universe survives for
a further period of time, that imposes a bound that is not subject
to the anthropic principle. For this, the quantity that matters is
the time derivative of the expected number of bubbles,

d〈N 〉
dt

= 4π

a0
$0

∫ η0

ηini

dη a(η)4(η0 − η)2. (5.11)

This imposes constraints that are numerically weaker but cannot
be avoided by anthropic reasoning. To be concrete, one can
carry out an experiment by waiting for a period of time texp, for
example 1 year. If, at the end of the time period, the experimenter
has not been hit by a bubble wall, this gives a constraint

texp
d〈N 〉
dt

! 1. (5.12)

For the post-inflationary Universe this is

texp
d〈N 〉
dt

= (texpH0)× 4.91$0H
−4
0 , (5.13)

and for texp = 1yr, one obtains the bound

$0 ! 2.9× 1010H4
0 , or B " 520. (5.14)

This is weaker than Equation (5.9), but because of the very strong
dependence of$0 on the top andHiggsmasses, it does not change
the stability constraints on them significantly.

5.3. Inflation
Although most of the spacetime volume of our past lightcone
comes from the late times, the vacuum decay rate $(a) was much
higher in the very early Universe. Depending on the cosmological
scenario, it can be high enough to violate the bound (5.7), and this
can be used to constrain theories.

The earliest stage in the evolution of the Universe that
we have evidence for is inflation, a period of accelerating
expansion, which made the Universe spatially flat, homogeneous
and isotropic and also generated the initial seeds for structure
formation. In simplest models of inflation, the energy density
driving it is in the form of the potential energy V(φ) of a
scalar field φ known as the inflaton. The inflaton field is nearly
homogeneous, and satisfies the equation of motion

φ̈ + 3Hφ̇ + V ′(φ) = 0. (5.15)

During inflation the potential satisfies the slow-roll conditions,

ε ≡
M2

P

2

(

V ′

V

)2

(1, and −1(η ≡ M2
P

(

V ′′

V

)

(1. (5.16)

These conditions guarantee the existence of a solution in which
the first term in Equation (5.15) is subdominant, and the inflaton
field rolls slowly down the potential V(φ). As a consequence, the
energy density ρ ≈ V(φ) and the Hubble rate are approximately
constant.

The Hubble rate during inflation, Hinf, is largely unknown.
Observationally it is constrained from above by the limits
on primordial B-mode polarization in the cosmic microwave
background radiation. This gives an upper bound r < 0.09
on the tensor-to-scalar ratio (Ade et al., 2016), which implies
Hinf ! 3.3 × 10−5MP ≈ 8.0 × 1013 GeV at the time when
the observable scales left the horizon. In a realistic inflationary
model, the Hubble rate decreases with time, and would therefore
be lower at the end of inflation. Although there are models in
which the Hubble rate is well below the tensor bound, it is
generally expected to be close to it, and in the simplest single-
field inflation models it even exceeds it. It is therefore considered
to be likely that the Hubble rate was significantly higher than the
Higgs massmH ≈ 125 GeV.

The minimal inflationary model is Higgs inflation (Bezrukov
et al., 2008), in which the non-minimal curvature coupling of the
Higgs field is large, ξ ∼ −49000

√
λ. This allows it to play the

role of the inflaton, without the need for a separate inflaton field.
During inflation, the Higgs field has a large value ϕ ∼ MP/|ξ |,
which means that the existence of a negative-energy minimum
would appear to pose a problem for the scenario, because if the
Higgs field gets trapped there, it would lead to a rapid collapse of
the Universe instead of inflation. However, inclusion of higher-
dimensional operators and finite temperature effects can avoid
this problem (Bezrukov et al., 2015). Of course, if the actual
top and Higgs masses lie in the stable region (see Figure 7), no
problem arises. Furthermore, if they are just below the stability
boundary, the effective Higgs potential would have an inflection
point which would allow the scenario known as critical Higgs
inflation (Bezrukov and Shaposhnikov, 2014; Hamada et al.,

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 22 December 2018 | Volume 5 | Article 40

Markkanen, Rajantie, Stopyra 

https://www.frontiersin.org/articles/10.3389/fspas.2018.00040/full


M. Swiatlowski (TRIUMF) March 31, 2023

Is the Universe Stable?

21

V(ϕ)

ϕ
H

HTunneling

If the only field in the universe was the Higgs, an SM-like
potential would be stable: our minimum is the global minimum

Quantum corrections (i.e. interactions with other particles) mean
that the effective shape can be quite different 

Even in the SM, our universe might only be meta-stable: 
able to tunnel to a lower energy state!

Measuring the potential as best as we can is critical: BSM physics 
can move our universe between stability and instability

Markkanen et al. Cosmological Aspects of Higgs Vacuum Metastability

FIGURE 7 | Stability diagram of the Standard Model vacuum state in the pole

masses Mt, Mh of the top quark and Higgs boson, respectively. Ellipses show

the 1σ , 2σ , 3σ confidence intervals for Mt and Mh around their central values

from Tanabashi et al. (2018). In the green region, the current vacuum is

absolutely stable, in the yellow region it satisfies the bound (5.9), and in the red

region it is so unstable that it would not have survived until the present day.

The instability boundary includes gravitational backreaction (Rajantie and

Stopyra, 2017) and is shown for ξ = 0 and ξ = ±1000 of the non-minimal

curvature coupling. The blue dashed line shows the instability bound (5.62)

obtained by taking the thermal history of the Universe into account (Delle Rose

et al., 2016) and assuming a high reheat temperature TRH = 1016 GeV. For

lower reheat temperatures, the instability bound becomes weaker, and

approaches the red dotted line as TRH → 0.

what we observe, no matter how low the probability is a priori.
One can therefore argue that observations do not require 〈N 〉 !
1. However, the anthropic argument does not rule out bubbles
hitting us in the future, and therefore, if the Universe survives for
a further period of time, that imposes a bound that is not subject
to the anthropic principle. For this, the quantity that matters is
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dependence of$0 on the top andHiggsmasses, it does not change
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Although most of the spacetime volume of our past lightcone
comes from the late times, the vacuum decay rate $(a) was much
higher in the very early Universe. Depending on the cosmological
scenario, it can be high enough to violate the bound (5.7), and this
can be used to constrain theories.

The earliest stage in the evolution of the Universe that
we have evidence for is inflation, a period of accelerating
expansion, which made the Universe spatially flat, homogeneous
and isotropic and also generated the initial seeds for structure
formation. In simplest models of inflation, the energy density
driving it is in the form of the potential energy V(φ) of a
scalar field φ known as the inflaton. The inflaton field is nearly
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These conditions guarantee the existence of a solution in which
the first term in Equation (5.15) is subdominant, and the inflaton
field rolls slowly down the potential V(φ). As a consequence, the
energy density ρ ≈ V(φ) and the Hubble rate are approximately
constant.

The Hubble rate during inflation, Hinf, is largely unknown.
Observationally it is constrained from above by the limits
on primordial B-mode polarization in the cosmic microwave
background radiation. This gives an upper bound r < 0.09
on the tensor-to-scalar ratio (Ade et al., 2016), which implies
Hinf ! 3.3 × 10−5MP ≈ 8.0 × 1013 GeV at the time when
the observable scales left the horizon. In a realistic inflationary
model, the Hubble rate decreases with time, and would therefore
be lower at the end of inflation. Although there are models in
which the Hubble rate is well below the tensor bound, it is
generally expected to be close to it, and in the simplest single-
field inflation models it even exceeds it. It is therefore considered
to be likely that the Hubble rate was significantly higher than the
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et al., 2008), in which the non-minimal curvature coupling of the
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During inflation, the Higgs field has a large value ϕ ∼ MP/|ξ |,
which means that the existence of a negative-energy minimum
would appear to pose a problem for the scenario, because if the
Higgs field gets trapped there, it would lead to a rapid collapse of
the Universe instead of inflation. However, inclusion of higher-
dimensional operators and finite temperature effects can avoid
this problem (Bezrukov et al., 2015). Of course, if the actual
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We know the SM is incomplete:
Where’s the missing anti-matter?

Is the universe stable?
The shape of the Higgs potential
may be key to the birth and fate

of the universe

Higgs pairs are the next frontier to understanding
the Standard Model and Beyond

The Higgs is still new and not fully explored
What can we learn from this new particle?

We can measure the Higgs potential



M. Swiatlowski (TRIUMF) March 31, 202323

The LHC Context

What Do We 
Look For?

The Next Frontier:
Higgs Pairs

Outlook



M. Swiatlowski (TRIUMF) March 31, 202323

The LHC Context

What Do We 
Look For?

The Next Frontier:
Higgs Pairs

Outlook



M. Swiatlowski (TRIUMF) March 31, 2023

What Does This Look Like?

24



M. Swiatlowski (TRIUMF) March 31, 2023

What Does This Look Like?

24

 [GeV]HM
100 120 140 160 180 200

Br
an

ch
in

g 
ra

tio
s

-310

-210

-110

1
bb

ττ

cc

gg

γγ γZ

WW

ZZ

LH
C

 H
IG

G
S 

XS
 W

G
 2

01
0

Fig. 35: SM Higgs branching ratios as a function of the Higgs-boson mass.
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Fig. 36: SM Higgs total width as a function of the Higgs-boson mass.
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ATLAS Software 
Trigger: 1 kHz

ATLAS Hardware 
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Collisions, to Physics
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LHC Collision 
Rate: 40 MHz

Collide quarks 
and gluons 

accelerated in 
protons by the 

LHC

Use coarse 
information and 
fast hardware to 
reduce rate by 
factor of 400

Use more fine-
grained info and 

software to 
reduce rate by 
factor of 100

Reconstruct 
detector 

information 
with highest 

detail

Analyze and 
search for new 

physics!
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Electromagnetic
Calorimeter

Hadronic
Calorimeter

Muon
Spectrometer

Inner
Detector
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Electron

Muon

Inner detector track
matched to calorimeter deposit

Inner detector track
matched to muon 

spectrometer track

Photon

Isolated electromagnetic
calorimeter deposit

Tau
Single or triple prong
decay to pions: tracks

and calorimeter deposits
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• A little bit of science 

• Machine learning and high energy “jets” 

• Applications of ML4Jets 
✦ CNN’s for “pileup” noise 
✦ GANs for simulation 
✦ Weak supervision and learning from data

When quarks or gluons are
produced during a collision…

Image credit: B. Nachman 

https://bnachman.web.cern.ch/bnachman/Talks.html
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• A little bit of science 

• Machine learning and high energy “jets” 

• Applications of ML4Jets 
✦ CNN’s for “pileup” noise 
✦ GANs for simulation 
✦ Weak supervision and learning from data

When quarks or gluons are
produced during a collision…

They “shower”
into more gluons and quarks…

Which “hadronize” into 
stable (or unstable particles)

We refer to these 
showers as “jets”

Image credit: B. Nachman 

https://bnachman.web.cern.ch/bnachman/Talks.html
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Jet
Spray of particles

initiated by quark or gluon,
measured in calorimeter



M. Swiatlowski (TRIUMF) March 31, 2023

ATLAS Jet Performance

31



M. Swiatlowski (TRIUMF) March 31, 2023

ATLAS Jet Performance

31

20 30 210 210×2 310 310×2
 [GeV]jet

T
p

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4Tp
) /

 
Tp(

σ
Je

t e
ne

rg
y 

re
so

lu
tio

n,
  in situEM+JES 

EM+JES total uncertainty
in situPFlow+JES 

PFlow+JES total uncertainty

 = 0.4R tkAnti-
| < 0.7η |≤0.2 

ATLAS
-1 = 13 TeV, 44 fbs

Eur. Phys. J. C 81 (2021) 689 

ATLAS now utilizing
PFlow reconstruction: significant

resolution improvements at low pT

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2018-05/
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New flavour uncertainty
treatment and MC/MC 

calibrations lead to sub-%
uncertainties above 80 GeV

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2018-05/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2022-005/
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b-jet
Jet initiated by a b-quark,
which form B-hadrons 

with long lifetimes 
and displaced vertices

Jets are common, 
but b-jets are much rarer

The most common 
Higgs decay is to b-jets: 

Can use this to find our signal!
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arXiv:2211.16345 

https://arxiv.org/abs/2211.16345
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show background rejection

as a function of 
b-jet efficiency 

arXiv:2211.16345 

https://arxiv.org/abs/2211.16345
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To quantify performance,
show background rejection

as a function of 
b-jet efficiency 

DL1r is the Run2 ATLAS
b-tagging algorithm:
Combines several

low-level vertexing inputs

Outperforms older BDT
MV2 by nearly a factor of 2!

arXiv:2211.16345 

https://arxiv.org/abs/2211.16345
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Survey of other Analyses

73
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hi
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s 
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de
ca

y

final state probability

J. Alison

Many channels are competitive
in measuring di-Higgs production:

No golden channel

Today, showing results from 
several recent analyses:

And their combination!

HH → bb̄γγ
HH → bb̄ττ̄
HH → bb̄bb̄

http://hep.uchicago.edu/~johnda/work/DiHiggsFall2016.pdf
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<latexit sha1_base64="1Dclis7FOv2veuL3E8KKDE3Vz30=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokVdBl0U2XFewDmhAmk0k7dGYSZiZCCdn4K25cKOLWz3Dn3zhts9DWAxcO59zLvfeEKaNKO863VVlb39jcqm7Xdnb39g/sw6OeSjKJSRcnLJGDECnCqCBdTTUjg1QSxENG+uHkbub3H4lUNBEPepoSn6ORoDHFSBspsE+8WCKcR56iI46KPOJB3m4XRWDXnYYzB1wlbknqoEQnsL+8KMEZJ0JjhpQauk6q/RxJTTEjRc3LFEkRnqARGRoqECfKz+cPFPDcKBGME2lKaDhXf0/kiCs15aHp5EiP1bI3E//zhpmOb/ycijTTRODFojhjUCdwlgaMqCRYs6khCEtqboV4jEwi2mRWMyG4yy+vkl6z4V42mvdX9dZtGUcVnIIzcAFccA1aoA06oAswKMAzeAVv1pP1Yr1bH4vWilXOHIM/sD5/AI9RlwY=</latexit>

mHH [GeV ]
<latexit sha1_base64="7+/4Rn0hBiHiFrxVbvy1fUM1bQo=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0YI8V7AekoWy203bpbhJ2N0IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1KNgkfYNNwI7CQKqQwFtsPx3cxvP6HSPI4ezSTBQNJhxAecUWOlruxl9fqU+PfYCnqlsltx5yCrxMtJGXI0eqWvbj9mqcTIMEG19j03MUFGleFM4LTYTTUmlI3pEH1LIypRB9n85ik5t0qfDGJlKzJkrv6eyKjUeiJD2ympGellbyb+5/mpGdwEGY+S1GDEFosGqSAmJrMASJ8rZEZMLKFMcXsrYSOqKDM2pqINwVt+eZW0qhXvslJ9uCrXbvM4CnAKZ3ABHlxDDerQgCYwSOAZXuHNSZ0X5935WLSuOfnMCfyB8/kDNfCRJA==</latexit>
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<latexit sha1_base64="XTDv4jIxVhqqENJI+z3eH8sZSeY=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0laQU9S8OKxgv2ANpTNdtMu3d2E3YlQSv+CFw+KePUPefPfmLQ5aOuDgcd7M8zMC2IpLLrut1PY2Nza3inulvb2Dw6PyscnbRslhvEWi2RkugG1XArNWyhQ8m5sOFWB5J1gcpf5nSdurIj0I05j7is60iIUjGIm1V23NChX3Kq7AFknXk4qkKM5KH/1hxFLFNfIJLW257kx+jNqUDDJ56V+YnlM2YSOeC+lmipu/dni1jm5SJUhCSOTlkayUH9PzKiydqqCtFNRHNtVLxP/83oJhjf+TOg4Qa7ZclGYSIIRyR4nQ2E4QzlNCWVGpLcSNqaGMkzjyULwVl9eJ+1a1atXaw9XlcZtHkcRzuAcLsGDa2jAPTShBQzG8Ayv8OYo58V5dz6WrQUnnzmFP3A+fwCOUY0/</latexit>
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<latexit sha1_base64="QxRQ8297yourMq3hjzhhYo3fGsg=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQU9S8OKxgv2ANpTNdtsu3d2E3YlQQv+CFw+KePUPefPfmLQ5aOuDgcd7M8zMCyIpLLrut1PY2Nza3inulvb2Dw6PyscnbRvGhvEWC2VougG1XArNWyhQ8m5kOFWB5J1gepf5nSdurAj1I84i7is61mIkGMVMqrtuaVCuuFV3AbJOvJxUIEdzUP7qD0MWK66RSWptz3Mj9BNqUDDJ56V+bHlE2ZSOeS+lmipu/WRx65xcpMqQjEKTlkayUH9PJFRZO1NB2qkoTuyql4n/eb0YRzd+InQUI9dsuWgUS4IhyR4nQ2E4QzlLCWVGpLcSNqGGMkzjyULwVl9eJ+1a1buq1h7qlcZtHkcRzuAcLsGDa2jAPTShBQwm8Ayv8OYo58V5dz6WrQUnnzmFP3A+fwCP2I1A</latexit>
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<latexit sha1_base64="ePC0WrA5PWVFG63QP8ejYfkXMRY=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoicpePFYwX5AG8pmO2mX7m7C7kYopX/BiwdFvPqHvPlvTNoctPXBwOO9GWbmBbHgxrrut1NYW9/Y3Cpul3Z29/YPyodHLRMlmmGTRSLSnYAaFFxh03IrsBNrpDIQ2A7Gd5nffkJteKQe7SRGX9Kh4iFn1GbSleuW+uWKW3XnIKvEy0kFcjT65a/eIGKJRGWZoMZ0PTe2/pRqy5nAWamXGIwpG9MhdlOqqETjT+e3zshZqgxIGOm0lCVz9ffElEpjJjJIOyW1I7PsZeJ/Xjex4Y0/5SpOLCq2WBQmgtiIZI+TAdfIrJikhDLN01sJG1FNmU3jyULwll9eJa1a1buo1h4uK/XbPI4inMApnIMH11CHe2hAExiM4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gCRX41B</latexit>
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<latexit sha1_base64="eHWvyYdAR3Hh/nqBDN7GiOhKrY0=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqqCcpePFYwX5AG8pmO2mX7m7C7kYopX/BiwdFvPqHvPlvTNoctPXBwOO9GWbmBbHgxrrut1NYW9/Y3Cpul3Z29/YPyodHLRMlmmGTRSLSnYAaFFxh03IrsBNrpDIQ2A7Gd5nffkJteKQe7SRGX9Kh4iFn1GbSleuW+uWKW3XnIKvEy0kFcjT65a/eIGKJRGWZoMZ0PTe2/pRqy5nAWamXGIwpG9MhdlOqqETjT+e3zshZqgxIGOm0lCVz9ffElEpjJjJIOyW1I7PsZeJ/Xjex4Y0/5SpOLCq2WBQmgtiIZI+TAdfIrJikhDLN01sJG1FNmU3jyULwll9eJa1a1buo1h4uK/XbPI4inMApnIMH11CHe2hAExiM4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gCS5o1C</latexit>
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<latexit sha1_base64="WaJNmpR5DsfxBNxNk0UC5o2+OJg=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqUE9S8OKxgv2ANpTNdtsu3d2E3YlQQv+CFw+KePUPefPfmLQ5aOuDgcd7M8zMCyIpLLrut1PY2Nza3inulvb2Dw6PyscnbRvGhvEWC2VougG1XArNWyhQ8m5kOFWB5J1gepf5nSdurAj1I84i7is61mIkGMVMqrtuaVCuuFV3AbJOvJxUIEdzUP7qD0MWK66RSWptz3Mj9BNqUDDJ56V+bHlE2ZSOeS+lmipu/WRx65xcpMqQjEKTlkayUH9PJFRZO1NB2qkoTuyql4n/eb0YRzd+InQUI9dsuWgUS4IhyR4nQ2E4QzlLCWVGpLcSNqGGMkzjyULwVl9eJ+1a1buq1h6uK43bPI4inME5XIIHdWjAPTShBQwm8Ayv8OYo58V5dz6WrQUnnzmFP3A+fwCUbY1D</latexit>
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<latexit sha1_base64="P9RVv/DOSfXcJbhqNUk6u4NkL1E=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYE9S8OKxgv2ANpTNdtsu3d2E3YlQQv+CFw+KePUPefPfmLQ5aOuDgcd7M8zMCyIpLLrut1PY2Nza3inulvb2Dw6PyscnbRvGhvEWC2VougG1XArNWyhQ8m5kOFWB5J1gepf5nSdurAj1I84i7is61mIkGMVMqrtuaVCuuFV3AbJOvJxUIEdzUP7qD0MWK66RSWptz3Mj9BNqUDDJ56V+bHlE2ZSOeS+lmipu/WRx65xcpMqQjEKTlkayUH9PJFRZO1NB2qkoTuyql4n/eb0YR3U/ETqKkWu2XDSKJcGQZI+ToTCcoZylhDIj0lsJm1BDGabxZCF4qy+vk3at6l1Vaw/XlcZtHkcRzuAcLsGDG2jAPTShBQwm8Ayv8OYo58V5dz6WrQUnnzmFP3A+fwCV9I1E</latexit>
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<latexit sha1_base64="KzftTe3kzoXAMUL09ahNa6+aDjM=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CQFLx4r2A9oQ9lsJ+3S3U3Y3Qgl9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IBbcWNf9dtbWNza3tks75d29/YPDytFx20SJZthikYh0N6AGBVfYstwK7MYaqQwEdoLJXe53nlAbHqlHO43Rl3SkeMgZtblUd93yoFJ1a+4cZJV4BalCgeag8tUfRiyRqCwT1Jie58bWT6m2nAmclfuJwZiyCR1hL6OKSjR+Or91Rs4zZUjCSGelLJmrvydSKo2ZyiDrlNSOzbKXi/95vcSGN37KVZxYVGyxKEwEsRHJHydDrpFZMc0IZZpntxI2ppoym8WTh+Atv7xK2vWad1mrP1xVG7dFHCU4hTO4AA+uoQH30IQWMBjDM7zCmyOdF+fd+Vi0rjnFzAn8gfP5A4zKjT4=</latexit>

Signal distribution strongly depends on κλ
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Signal distribution strongly depends on κλ

Increasing  leads the ‘triangle diagram’ to dominate:
signal peak shifts to lower 
κλ

mHH
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1.1. Overview of production modes 7

gg → HH (NNLOFTapprox)

VBF (N3LO)

WHH (NNLO)

ZHH (NNLO)

ttHH (NLO)
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σ(pp → HH + X) [fb]

MH = 125 GeV
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Figure 1.2: Total production cross sections for Higgs pairs within the SM via gluon fusion,
vector-boson fusion, double Higgs-strahlung and double Higgs bremsstrahlung off top quarks.
PDF4LHC15 parton densities have been used with the scale choices according to Table 1.1. The size
of the bands shows the total uncertainties originating from the scale dependence and the PDF+Æs
uncertainties.
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Figure 1.3: Higgs pair invariant mass distribution at leading order for the different contributions to
the gluon fusion production mechanism and their interference.
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arXiv:1910.00012 

Measuring at high  gives you sensitivity only to the boxmhh

Measuring at low  gives access to the triangle, and mhh κλ
Shapes your analysis strategy: 

need low  triggers and shape informationpT

https://arxiv.org/pdf/1910.00012.pdf
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 HH → bb̄γγ
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Trigger on diphotons

( )ET > 35,25 GeV

Require two photons 
(Leading (subleading) )pT /mγγ > 0.35 (0.25)

Select < 6 jets
( )pT > 25 GeV, |η | < 2.5

Require 2 b-tagged jets
( )ϵ = 77 %

Phys. Rev. D 106 (2022) 052001 

Cleanest signature possible:
low signal rate, but low bkgds too!

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.052001
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 HH → bb̄ττ̄

Trigger on di- , , 
or single 

τ ℓ + τ
ℓ

Require 1 or 2 ‘loose’ :τ
mττ > 60 GeV

Require 2 b-tagged jets
( )ϵ = 77 %

Separate into  and  channelsτhτh τℓτh

arXiv:2209.10910

Balanced signature:  allows for
good bkgd suppression

τh

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-40/
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 HH → bb̄bb̄

Combination of 6 b-jet triggers

4 b-tagged jets 
( , )ϵ = 77 % pT > 40 GeV

Pair “closest jets” to form
Higgs candidates

arXiv:2301.03212
Extremely challenging signature:

Large signal, but large backgrounds,
And difficult to simulate!

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-29
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Utilize -tagging in the trigger

to manage the rates!
b

Fast -tagging is enormously
complicated: huge optimization
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Enables efficient recording of 4 jets with  GeV,
and only 2 b-tags online

pT > 45

Eur. Phys. J. C 81 (2021) 1087 
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Reconstruct Higgs candidates, form “mass plane” 

Center is signal-like; outer regions used for background
and background validation

$7/$6
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$7/$6

 Backgroundbb̄bb̄

47

Step 1: use CR to 
train neural network to

reweight data from 2b to 4b

Orange histogram comes 
from 2b, black points from 4b

Step 0: form “mass planes” 
with leading/subleading Higgs, 

for 2b and 4b events

Neural network training

Step 2: Apply this NN to 2b
center: prediction for 4b SR

Systematics from 
alternate regions
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Many usual types of uncertainties (alternate regions, etc.)

But statistical uncertainties play an important role as well:
bkgd estimate NN very sensitive to fluctuations in training
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Large range of
signal regions defined

Cover various kinematic,
production regions

No excess observed
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J. Alison For optimal sensitivity:
combine all three analyses

into a single statistical
interpretation

No single analysis powerful
enough to measure these

processes on its own!

http://hep.uchicago.edu/~johnda/work/DiHiggsFall2016.pdf
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Limits on the SM

51

arXiv:2211.01216 

Let’s put it all together: 
can we see HH?

Here, show “how many times
larger the SM would have to 

be for us to be 
sure we didn’t see it”

Individual analyses set 
limits at ~4.5x SM

Together, set 
limit at 2.4x SM

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2022-03/


M. Swiatlowski (TRIUMF) March 31, 2023

Measuring the Potential

52



M. Swiatlowski (TRIUMF) March 31, 2023

Measuring the Potential

52

Here, show likelihood vs κλ



M. Swiatlowski (TRIUMF) March 31, 2023

Measuring the Potential

52

Here, show likelihood vs κλ

Minimum here is the 
“best fit”



M. Swiatlowski (TRIUMF) March 31, 2023

Measuring the Potential

52

Here, show likelihood vs κλ

Minimum here is the 
“best fit”

95% C.L. range 
is the “limit”



M. Swiatlowski (TRIUMF) March 31, 2023

Measuring the Potential

52

Here, show likelihood vs κλ

Minimum here is the 
“best fit”

95% C.L. range 
is the “limit”

Each of the three
analyses contributes
to the combination



M. Swiatlowski (TRIUMF) March 31, 2023

Measuring the Potential

52

Here, show likelihood vs κλ

Minimum here is the 
“best fit”

95% C.L. range 
is the “limit”

 is 
the allowed range: 

starting to probe EWBG!

−0.6 ≤ κλ < 6.6

Each of the three
analyses contributes
to the combination
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Beyond κλ

53

Focused discussion on , but
a whole host of additional BSM 

physics is accessible

κλ

Critical to understand degeneracies 
with : are we actually measuring 
the Higgs potential, or other BSM?

κλ
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can push limit to ~2x SM
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much signal as possible
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Analysis of run2 data isn’t
even complete!

With additional channels,
can push limit to ~2x SM

More data from Run3 will
bring us tantalizingly close

to evidence of HH

10 210 310 410 510
ggF
SMσ HH) normalised to → (pp ggFσ95% CL upper limit on 

Combined

-W+Wb b→HH

γγ
-W+ W→HH

-W+W-W+ W→HH

γγb b→HH

bbb b→HH

-τ+τb b→HH 12.5 15 12

12.9 21 18

20.3 26 26

160 120 77

230 170 160

305 305 240

6.9 10 8.8

Obs. Exp. Exp. stat.

Observed
Expected

σ 1±Expected 
σ 2±Expected 

ATLAS
-1 = 13 TeV,  27.5 - 36.1 fbs

 HH) = 33.5 fb→ (pp ggF
SMσ

No golden channel: need as
much signal as possible

And combination with CMS data
will get us even better!
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DL1r was ATLAS’s run2 
tagger: outperformed
BDT’s by a factor of 2

Now, GNN-based algorithms
outperform DL1r(d)

by another factor of 2!

4x less background per b-jet, with just algorithmic improvements!

And we can run it in the trigger, too!

FTAG-2023-01 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
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Triggers have also been 
re-optimized, especially

for  and bb̄bb̄ bbττ

Nearly 100% more signal
at low  for 

final state!
mhh bb̄bb̄

Improved -tagging, jet
reconstruction, calibration,

 selections, bandwidth

b

pT

ATLAS B-Jet Trigger 

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BJetTriggerPublicResults
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upgrade during 2024 until 2026, featuring a new LHC triplet design (low-b ⇤ quadrupoles, crab cavities),
and injector upgrades for luminosity levelling [197]. Here, also the experiments will undergo major
upgrades to prepare for the high-luminosity phase [198, 199]. Collisions are expected to resume in
2026 allowing to deliver to each experiment (ATLAS and CMS) 300 fb�1 per year. The following table
summarises some of the LHC beam parameters during Run-1, Run-2, and as expected for Run-3 and the
HL-LHC.25

Parameter	 LHC	Run-1 LHC	Run-2	&	3	 HL-LHC

Beam	energy	[TeV] 0.45–4 6.5–7 7

Peak	inst.	 luminosity	[cm–2 s–1] 0.8 ·	1034 (0.7–2)	·	1034 5	·	1034 (levelled)

Bunch	distance	[ns] 50 25 25

Max.	number	of	bunches 1380 2028~2748	 2748

b*	[cm] 60 40 15

en [µm] 2.3 2.5–3.5 (2.3	with	BCMS) 2.5

Max.	num.	protons	per	bunch 1.7	·	1011 1.2	·	1011 2.2	·	1011

Average	pileup ⟨µ⟩ 21 21~50	 140
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Fig. 54: Sketch illustrating the integrated luminosity evolution dur-
ing the various LHC phases [200]. LHC physics will hardly look the
same again.

If one wants to succinctly highlight
the main physics results of the LHC
proton–proton programme during Run-
1, one should emphasise the discovery
of the Higgs boson, searches for addi-
tional new physics (all negative), multi-
ple SM measurements, the observation
of rare processes such as Bs ! µµ , pre-
cision measurements of SM processes
and parameters, and the study of CP
asymmetries in the Bs sector. For Run-
2 and Run-3, the focus lies on searches
for new physics at the energy frontier,
improved measurements of Higgs cou-
plings in the main Higgs boson chan-
nels, consolidation and observation of
the remaining Higgs decay and pro-
duction modes, measurements of rare
SM processes and more precision, im-
proved measurements of rare B decays and CP asymmetries. Finally, the HL-LHC will serve for preci-
sion measurements of Higgs couplings, the search for and observation of very rare Higgs modes (among
these di-Higgs production), the ultimate new physics search reach (on mass and forbidden decays such
as FCNC), and ultimate SM and heavy flavour physics precision for rare processes (VBS, aT/QGC, etc.).
Although any new physics found along the way would likely be a game changer in this planning process,
these physics goals are “must do” topics for the HL-LHC.

The substantial increase in luminosity will pose major technical challenges for the experiments. The
average pileup will rise to hµi = 140 inelastic collisions per bunch crossing at (levelled) 5 ·1034 cm�ss�1,

25Recall that L µ (sxsy)�1 = (enb ⇤/g)�1
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the huge LHC datasets
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More in:
Phys. Rev. D 106 (2022) 052001 

arXiv:2209.10910  
arXiv:2301.03212 
arXiv:2211.01216 

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.052001
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-40/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-29
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2022-03/
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( , )ϵ = 77 % pT > 40 GeV
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Large-R jet trigger ( )ET > 450 GeV
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(R=1.0, )pT > 450 (250) GeV

2, 3, or 4 b-tags (via track-jets, )ϵ = 77 %
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Reconstruct Higgs candidates, form “mass plane” 

Center is signal-like; outer regions used for background
and background validation
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SR: prediction for 4b SR

Systematics from 
alternate regions
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Here, apply NN to 2b data in VR

Works well, even on data
that wasn’t used in training!

Why does this work?

NN’s learn a density ratio of 
two classes: normally this ratio
is used to isolate a single class,

but can be used to reweight classes
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No excess either (also in 3b and 2b SR)
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 strongestbb̄bb̄ strongestbb̄ττ̄ strongestbb̄γγ

Here, show results
from all three analyses

 and  have
similar resonant-

optimized searches

bb̄γγ bb̄ττ̄

(  has parameterized
NN for different signal

mass points)

bb̄ττ̄

All three analyses 
complementary: 
set best limits at 
different ranges
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• For : photon kinematics, b-jet kinematics, bb-system 
kinematics, missing energy, total energy, “top-ness”

• For : mHH, mbb, mττ, DR(b,b), DR(τ,τ), DPt(lep,τ), MET, 
DPhi(lepτ, bb)…

• For :

bb̄γγ

bb̄ττ̄

bb̄bb̄

Variables for MVAs
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 has strongest sensitivity, but other channels also contributeτhadτhad
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