

Neutrinos from Stored Muons nSTORM

n physics with a µ storage ring

Motivation

The idea of using a muon storage ring to produce neutrino beams for experiments is not new

- ø 50 GeV beam Koshkarev @ CERN in 1974
- ø 1 GeV Neuffer in 1980

Ø nuSTORM can:

- Address the large Dm² oscillation regime and make a major contribution to the study of sterile neutrinos
 - ø Either allow for precision study, if they exist in this regime
 - Ø Or greatly expand the dis-allowed region
- ø Make precision n_e and n_e -bar cross-section measurements
- Provide a technology test demonstration (mdecay ring) and m beam diagnostics test bed
- ø Provide a precisely understood n beam for detector studies

mbased n beams

Well-understood neutrino source: $m^{\dagger} \otimes e^{+} \overline{n}_{m} n_{e}$ μ Decay Ring: $\overline{m} \otimes e^{-} n_{m} \overline{n}_{e}$

S Flavor content fully known

- *"Near Absolute*" Flux Determination is possible in a storage ring
 Beam current, beam divergence monitor, m spectrometer
- Overall, there is tremendous control of systematic uncertainties with a well designed system

vSTORM

4

vSTORM

Baseline(s)

3 100 kW Target Station

- ø Assume 60 GeV proton
 - ø Fermilab PIP era
- ø Ta target
 - Optimization on-going
- Horn collection after target
 - ø Li lens has also been explored

Sollection/transport channel

- Stochastic injection of p
- At present NOT considering simultaneous collection of both signs

Decay ring

- ø Large aperture FODO
- ø Racetrack FFAG
- ø Instrumentation
 - ø BCTs, mag-Spec in arc, polarimeter

‡ Fermilab

FODO Decay ring

 $3.8 \text{ GeV/c} \pm 10\%$ momentum acceptance, circumference = 350 m

vSTORM

Alan Bross

nuSTORM Workshop

September 21, 2012

Alex Bogacz

JLAB

The Physics Reach

Assumptions

N_m = (POT) X (p/POT) X e_{collection} X e_{inj} X (mp) X A_{dynamic} X W
 10²¹ POT in 5 years of running @ 60 GeV in Fermilab PIP era

- ø 0.1 p/POT (FODO)

Ao Liu

- mp = 0.08 (gct X mcapture in p ® mdecay) [p decay in straight]
- ø $A_{dynamic} = 0.75$ (FODO)
- ø W= Straight/circumference ratio (0.43) (FODO)
- **S** This yields » 1.7 X 10¹⁸ useful mdecays

Experimental Layout

Appearance Channel: N_e ® N_m *Golden Channel*

Must reject the "wrong" sign mwith great efficiency

Why n_m® n_e Appearance Ch. *"not"* possible

Appearance-only (though disappearance good too!)

$$Pr[e \to \mu] = 4|U_{e4}|^2|U_{\mu4}|^2\sin^2(\frac{\Delta m_{41}^2L}{4E})$$

🛟 Fermilab

vstorm Baseline Detector Super B I ron Neutrino Detector: SuperBIND

Magnetized I ron

ø 1.3 kT

- Following MINOS ND ME design
- ø 1-2 cm Fe plate
- ø 5 m diameter
- Utilize superconducting transmission line for excitation
 - Developed 10 years ago for VLHC
- Extruded scintillator
 +SiPM

20 cm hole For 3 turns of STL

‡ Fermilab

Alan Bross

nuSTORM Workshop

September 21, 2012

Backgrounds

Left: 1 cm plates

Right: 2 cm plates

Alan Bross

Raw Event Rates

Neutrino mode with stored μ^+ .

Channel	$N_{\rm osc.}$	$N_{\rm null}$	Diff.	$(N_{\rm osc.} - N_{\rm null})/\sqrt{N_{\rm null}}$
$\nu_e \rightarrow \nu_\mu \ {\rm CC}$	332	0	∞	∞
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \ NC$	47679	50073	-4.8%	-10.7
$\nu_e \rightarrow \nu_e ~{\rm NC}$	73941	78805	-6.2%	-17.3
$\bar{\nu}_{\mu} \to \bar{\nu}_{\mu} \ CC$	122322	128433	-4.8%	-17.1
$\nu_e \to \nu_e \ {\rm CC}$	216657	230766	-6.1%	-29.4

Anti-neutrino mode with stored μ^- .

Channel	$N_{\rm osc.}$	N_{null}	Diff.	$(N_{\rm osc.} - N_{\rm null})/\sqrt{N_{\rm null}}$
$\bar{\nu}_e \rightarrow \bar{\nu}_\mu~{\rm CC}$	117	0	∞	∞
$\bar{\nu}_e \rightarrow \bar{\nu}_e \ \mathrm{NC}$	30511	32481	-6.1%	-10.9
$\nu_{\mu} \rightarrow \nu_{\mu} \ \mathrm{NC}$	66037	69420	-4.9%	-12.8
$\bar{\nu}_e \rightarrow \bar{\nu}_e~{\rm CC}$	77600	82589	-6.0%	-17.4
$\nu_{\mu} \rightarrow \nu_{\mu} \ CC$	197284	207274	-4.8%	-21.9

🛟 Fermilab

nuSTORM Workshop

Alan Bross

14

September 21, 2012

n_e ® n_mappearance CPT invariant channel to MiniBooNE

‡ Fermilab

Alan Bross

A Perfect nuSTORM?

- SuperBI ND & a large LAr detector can fit in the DO Bldg.
- n_m beam (fr. p decay, Turn 1)
- 🧭 mdecay n beam

 $\mu^{+} \rightarrow e^{+} \overline{v}_{\mu} v_{e}$ $\mu^{-} \rightarrow e^{-} v_{\mu} \overline{v}_{e}$

 With 40k evts/ton add small LAr detector at near hall in addition to the 1-200T of SuperBIND

CD1 Image in SuperBIND Inmand ne disappearance in both SuperBIND & LAR n_e appearance in LAr from n_m from p decay 7 Opprade – magnetize the LAr Ø n_mappearance LAr \mathcal{O} n_e appearance (from n_m \mathbb{R} n_e) in LAr?

🛟 Fermilab

Project Considerations

Back to Earth

Siting Concept

Steve Dixon (Fermilab FESS) will discuss tomorrow

🛟 Fermilab

Alan Bross

Major Components

- ø Beamline, Target Station & Horn
- ø Transport line
- ø Decay ring
- ø Detectors (Far & Near)
- ø Project Office
- ø Total

Basis of Estimation (BOE)

 Took existing facilities (MiniBooNE beam line and target station, MI NOS detector, vetted magnet costing models, m2e civil construction costs, EuroNu detector costing, have added all cost loading factors and have escalated to 2012 \$ when necessary.

\$30M
9
54
18
15
\$126M

🛟 Fermilab

Moving Forward

Why we are here

Moving forward:

S Facility

- Targeting, capture/transport & Injection (Striganov, Liu)
 - Need to complete detailed design and simulation
- ø Decay Ring optimization (Neuffer, Mori, Sato)
 - ø Continued study of both RFFAG & FODO decay rings
- ø Decay Ring Instrumentation (Tassotto)
 - Define and simulate performance of BCT, Magneticspectrometer, etc.
- Produce full G4Beamline simulation of all of the above to define n flux
 - ø And verify the precision to which it can be determined.

Moving forward:

Ø Detector simulation

- For oscillation studies, continue MC study of backgrounds & systematics
 - Start study of disappearance channels
- In particular the event classification in the reconstruction needs optimization.

 - Plan to assign hits to and fit multiple tracks.
 - ø Vertex definition must also be improved.
 - ø Multivariate analysis.
- For cross-section measurements need detector baseline design
 - ø Learn much from detector work for LBNE & IDS-NF
 - $\ensuremath{\ensuremath{\mathnormal{O}}}$ Increased emphasis on $n_{\rm e}$ interactions, however

Produce Full Proposal for June 2013 PAC Mtg.

June 2012 PAC response to nuSTORM presentation

The combination of a clear resolution of the shortbaseline neutrino anomalies, the precise measurements of the neutrino cross sections, and the synergy with neutrino-factory technology makes this a potentially attractive project.

From Pier

 As you see, the Committee was quite intrigued by the possibility of the nuSTORM approach to resolving the short-baseline neutrino anomalies and its being a stepping stone toward use of neutrino-factory technology.

💋 So,

 Although we do not have a mandate (\$\$\$), there is recognition of the power of the concept and encouragement to proceed to a full proposal.

nSTORM: Conclusions

The Physics case:

- Initial simulation work indicates that a L/E » 1 oscillation experiment using a muon storage ring can confirm/exclude at 10s (CPT invariant channel) the LSND/MiniBooNE result
- Inmand (ne) disappearance experiments delivering at the <1% level look to be doable</p>
 - Systematics need careful analysis
 - Detailed simulation work on these channels has not yet started
 - ${\it {\it \sigma}}$ Detector implications for $n_{\rm e}?$
- Cross section measurements with near detector(s) offer a unique opportunity

The Facility:

- Presents very manageable extrapolations from existing technology
 - But can explore new ideas regarding beam optics and instrumentation
- Offers opportunities for extensions
 - Add RF for bunching/acceleration/phase space manipulation
 - Provide msource for 6D cooling experiment with intense pulsed beam

Back Ups

Costing Details

Beamline & Target Station

Based on MiniBooNE Horn & PS, misc electrical equipment \$6.0M Instrumentation .5 Ø Civil (~ 2XMiniBooNE) 6.3 Ø Beam line 1.5 Ø ø Total \$14.3 Second to the ø 1.35 – in 2012 \$

Ø Total: \$30M

Decay Ring

Magnets (Used Strauss & Green Costing Model) – V. Kashikhin

nuStorr	n Supercond	lucting Mag	jnets co	st estimat	ion June	14, 2012					
		Dolo field	Longth	A = a = t + m a	Quantit	Creationt	Magnat Cast*	Tatal asst		2 1 4 2	Create
		Pole Tield	Length	Aperture	У	Gradient	wagnet cost*	Total cost		3.142	Cryo
Name	Туре	Вр, Т	Lm, m	Da, m	Qty	G, T/m	C, M\$	Total C, M\$			Cr,M\$
D1	Dipole	3.9	0.85	0.3	24	0	0.4787	11.488			1.56
Q1	Quadrupole	3.8	0.5	0.3	30	6.33	0.2070	6.210			1.95
Q2	Quadrupole	1.6	0.6	0.3	33	2.67	0.1295	4.273			2.145
Q3	Quadrupole	0.4	0.6	0.3	63	0.67	0.0526	3.313			4.095
	•				150			25.3	M\$		9.8
* - mag length	net cost calo	culated usir	ng the m	nagnetic fi	eld energ	y volume	where Lm is tl	ne magnet			

Decay Ring – Estimate II

From Alex Bogacz (ring designer)

19 June 2012 - KBB												
May 15 13:20 Ring_new.opt												
qty		name	Lcm	aperture	Bkgcm[i]	Bkgcm[i]	width[cm]	height[cm]	radius[cm]	storedenergy[MJ]	cost/ea c	cost/type
2	4	dAin	85	15	38.9138	0	15	15		0.1184	\$30,804	\$739,303
	4	qD1	50	15	0	-2.68838			15	0.1143	\$290,562	\$1,162,249
	4	qD2	50	15	0	-2.56058			15	0.1037	\$263,594	\$1,054,374
	4	qD3	50	15	0	-2.43127			15	0.0935	\$237,643	\$950,571
	2	qD4	50	15	0	-2.45204			15	0.0951	\$241,720	\$483,441
1	2	qDD	60	30	0	-0.108			30	0.0035	\$9,003	\$108,041
	2	qDDa	30	30	0	-0.108			30	0.0018	\$4,502	\$9,003
2	8	qDS	60	15	0	-1.086			15	0.0224	\$56,898	\$1,593,151
	4	qF1	50	15	0	2.38574			15	0.0900	\$228,825	\$915,302
	4	qF2	50	15	0	2.48112			15	0.0974	\$247,488	\$989,951
	4	qF3	50	15	0	2.57227			15	0.1047	\$266,006	\$1,064,023
	4	qF4	50	15	0	2.53313			15	0.1015	\$257,972	\$1,031,889
1	2	qFD	60	30	0	0.108			30	0.0035	\$9,003	\$108,041
3	6	qFS	60	15	0	1.086			15	0.0224	\$56,898	\$2,048,337
	2	qFSa	30	15	0	1.086			15	0.0112	\$28,449	\$56,898
	2	qMD1	50	15	0	-0.804088			15	0.0102	\$25,994	\$51,987
	2	qMD2	50	15	0	1.10154			15	0.0192	\$48,782	\$97,564
	2	qMD3	50	15	0	-0.76149			15	0.0092	\$23,312	\$46,625
	2	qMD4	50	15	0	0.354415			15	0.0020	\$5,050	\$10,100
	2	qMS1	50	15	0	-2.05816			15	0.0670	\$170,301	\$340,601
	2	qMS2	50	15	0	1.87905			15	0.0559	\$141,950	\$283,900
	2	qMS3	50	15	0	-1.61757			15	0.0414	\$105,192	\$210,385
	2	qMS4	50	15	0	1.41665			15	0.0317	\$80,683	\$161,366
												\$13,517,101.53

🛟 Fermilab

Alan Bross

Decay Ring

- Used bigger number for magnets
- **Ø** PS & Instrumentation \$1M
- Ø Vacuum \$2M
- 💋 Civil \$15.7M
 - Based on m2e tunnel costs (&depth) (\$9.5k/foot) times 1.5 to fully load, EDIA...
- Ø Total: 53.8M
- Solution Note: Transport line costed at 17% (by length) of DR \$9M

Estimate effort to produce full proposal

Table X. Estimated effort to produce full proposal

Task	ΣFTE		
Target Station	0.75		
Capture & transport	1.25		
Injection	0.25		
Decay ring	2		
Far Detector (Engineering)	1		
Far Detector (Sim & Analysis)	2		
Near Detector (Engineering)	1		
Near Detector (Sim & Analysis) ^a	3.5		
Costing	1		
Total	12.75		

🛟 Fermilab

Alan Bross