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|
Introduction

@ Both ve and 7, are present in the Y'STORM beam
@ Four oscillation detection modes are possible
Q v, appearance: ve — v, 1~ signal
© 17, disappearance: 7, — e, u* signal
© v, disappearance: v, — v,, e~ signal
© 7, appearance: 7, — e, €' signal
@ Central requirement is charge discrimination
@ Requires a magnetic field and good detector efficiency
@ A magnetized iron neutrino detector fulfills these requirements for
a p* signal.

R. Bayes (University of Glasgow) Detector Simulation and Performance September 21, 2012 3/17



|
Introduction

@ Both v, and 7, are present in the YSTORM beam
@ Four oscillation detection modes are possible
@ v, appearance: ve — v, 1~ signal
© 17, disappearance: 7, — e, u* signal
© v, disappearance: v, — v,, e~ signal
© 7, appearance: 7, — e, €' signal
@ Central requirement is charge discrimination
@ Requires a magnetic field and good detector efficiency
@ A magnetized iron neutrino detector fulfills these requirements for
a p* signal.

R. Bayes (University of Glasgow) Detector Simulation and Performance September 21, 2012 3/17



Detector Design

@ Detector consists of layered
iron and scintillator planes

@ Iron plates 1 cm(2 cm) thick. \\W

e Scintillator planes 2 cm thick. 7 '\w\“ﬁ%wvw
o Composed of scintillator A T}lll?ﬁ;j?i i
bars 1 cm thick and 1 cm » "“}“ ﬂ"ﬁ‘“‘ﬁﬁl
width. : o
o Measure x and y position at
each plane.
@ Circular cross-section, 5 m
diameter.

@ 20 m long for 1 kton mass.

@ Magnetization achieved with
SCTL
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SuperBIND Simulation

@ Based on MIND simulation for y/ \
the Neutrino Factory X\

@ Neutrino events simulated in , \ =
GENIE. Lo

@ Detector geometry and
materials simulated with
GEANT4.

@ Scintillator plane simulated as
a polystyrene slab.

@ hits grouped into discrete
bars and attenuate in
digitization.

@ Use toroidal field: model from
fit to simulation of field.

Magnetic Field Along 45 degree Azimuth
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Reconstruction

@ Uses a Kalman filter for pattern recognition and track fitting.
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@ Longest set of single hits
identified as muon.

@ Further hits filtered into track.

@ Fits assume

e range of track as estimate of
momentum .

e sum of deviation of track from
straight-line in magnetic field
estimates the charge.

@ Only the muon track is fit.

@ No hadron reconstruction from
digitized events.
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Software Summary

@ Software is modular.
@ Parts are interchangeable.

@ Information between simulation and reconstruction uses a "bhep"
format.

Beam Flux | GEANT4

mindG4 Digitization mind_rec ROOT Tree

Event Selection
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Charge Current Selection

@ |dentify muon signals.

@ Reject tracks from NC events
and shower processes.
@ Analysis simplified to six cuts.

Successful reconstruction
p. <1.6xE,.

Track vertex before last 1 m
of detector volume

Fitted track includes >60%
of candidate hits.

Scaled curvature uncertainty
is CC event like.

Number of candidate hits is
CC event like.

@ Greatest analytic power in
likelihood cuts.

R. Bayes (University of Glasgow)

CC Selection

Track quality

Fitted proportion

Max Momentum

Fiducial

Reconstruction Success

- w signal from v, CC

Il Background from
I Background from
[ Background from
I Background from

v,cC
v,NC
v ,CC
v .NC
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Muon Selection from Uncertainty in Curvature

©
o

E |, Correct Charge 1D
. Incorrect Charge ID
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o Distributions of | /2| compiled for

@ CC events with correct charge
@ CC events with incorrect charge
@ NC events

@ Distributions used to define a
quantity

 P(ogp/(a/P)ICC))
Lalp =109 B, J(a/P)INC))

@ Allow events with Lg/p > 0.5.

@ A "weak" cut to remove signal
from background.
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Analysis

Muon Selection from Number of Hits

Probabilty
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@ Number of candidate hits in muon

trajectory compiled for

e CC events
@ NC events

@ Distributions used to define a
quantity

»CCC _ Iog P(Ncand|cc))

@ Allow events with Loc > 6.5

@ A very strong cut to remove
background.

@ Also good at eliminating low
energy signal.
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Efficiency and Background Rejection

1 cm Plate 2 cm Plate
.50'453 T 04t -
g 045 - 50.355 i
Eiw - g o3 -
% 0250 - EO'Z% -
& 02 ~ 5 02 .
0.15F - 50.15-
0.1 - L 0.1~ -
0.05E - 0.05E -
G:‘Hm [, o P N AR TR G: ““““ [ R B
0 05 1 15 2 _ 25 3 35 0 05 1 15 2 25 3 35
True Neutrino Energy True Neutrino Energy
@ 1 cm Fe plates and 2 cm Fe plates considered.
@ 1 cm plate initially favoured to improve energy threshold.
@ Rejection of charge mis-ID events better in 2 cm plate.
@ Improvement due to the larger magnetic field.
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Efficiency and Background Rejection

1 cm Plate 2 cm Plate
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@ 1 cm Fe plates and 2 cm Fe plates considered.

@ 1 cm plate initially favoured to improve energy threshold.
@ Rejection of charge mis-ID events better in 2 cm plate.
@ Improvement due to the larger magnetic field.

True Neutrino Energy (éev)
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Detector Response

Signal Response, 2 cm Plate Background Response
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@ Full energy reconstruction still lacking.
E _ MNE, + 3(mf, — my — mf)
v my — E, + p, cosd

for QES events, or

E .
E, = E, + Ehag> Enag is smeared by 0Brag _ 055 | 3

Ehad - /Ehad
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Sensitivity to Sterile Neutrinos

Number of Events / 0.30 GeV
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@ Above results synthesized by
Chris Tunnel into sensitivities

@ 100 goal is reasonable
achieved.

R. Bayes (University of Glasgow)

Am

@ Only statistical uncertainties
included.

@ Consideration of systematic
errors required.
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Short Term Progress

@ Improvements made parasitically to NuFact MIND development
@ Fit multiple trajectories.

@ Allow for muon reconstruction at lower momenta.
o |dentify set of hadron hits.

@ Introduce multi variate analysis for CC selection
@ Use more variables than Ny
o Possible variables include mean energy deposition and variation in
energy deposition.
@ Quantify systematic uncertainties
e Background due to cosmic rays.
o Cross-section uncertainties.
e Fiducial uncertainty.
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Multiple Trajectory Fits

jo_ e DIS @ Secondary tracks observed in

;%ssoo; &‘&%’k,&* Mw*‘*w% DIS and QES events.

goort- % P, @ Reduces event into series of

g . *, trajectories

=t = o Longest set of hits identified.

ok o Hits filtered into trajectory.

ol ‘ e Repeat with remaining hits.
I LM e Stop when less than 5 hits

ZPositions

are left.

@ Working on the best way to
use this information.

@ Figures from Tapasi Ghosh,
4th Annual EURONu Meeting.
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Multiple Trajectory Fits

:‘E’“"?* . @ Secondary tracks observed in

ST DIS DIS and QES events.
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£ F trajectories

u:::* T o Longest set of hits identified.
s . e Hits filtered into trajectory.
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e Stop when less than 5 hits
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@ Figures from Tapasi Ghosh,
4th Annual EURONu Meeting.
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Multiple Trajectory Fits

S
s
3

@ Secondary tracks observed in
DIS and QES events.

@ Reduces event into series of
trajectories

e Longest set of hits identified.

o
3
S

T T T T T[T T T[T T

San(XPositigns[0]*2+Positions[0]*2)
3
8
S

o
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3

1 e Hits filtered into trajectory.
so0o e Repeat with remaining hits.
Y A U e Stop when less than 5 hits
Frostonsl are left.
e Figures from Tapasi Ghosh, @ Working on the best way to
4th Annual EUROnu Meeting. use this information.
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Multiple Trajectory Fits

imi QES . @ Secondary tracks observed in
3 DIS and QES events.
w0 @ Reduces event into series of
sl r trajectories
ol ¥ - o Longest set of hits identified.
ol e - e Hits filtered into trajectory.
as007- T o Repeat with remaining hits.
E ' 'ao‘oo' — '90‘00' = %ot[zoo' — ‘110'00‘ = izéod 3000 ° Stop When IeSS than 5 hltS
FPostions are left.
@ Figures from Tapasi Ghosh, @ Working on the best way to
4th Annual EUROnNnu Meeting. use this information.
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Multi-variate Analysis
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UO-Tou (55} (00, 00102,

oom

UO-tow (580, 00 00,

@ Considered 6
variables

@ Trained for CC and
NC bkgnd rejection
@ Still needs work

o better
understanding of
variable
distributions
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Multi-variate Analysis
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@ Considered 6
variables

@ Trained for CC and
NC bkgnd rejection
@ Still needs work

o better
understanding of
variable
distributions
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Multi-variate Analysis

Cut efficiencies and optimal cut value

Efficiency (Purity)
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@ Approximate NC background analysis

@ Variables in CC background analysis are not

R. Bayes (University of Glasgow)

Significance
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@ Considered 6
variables

@ Trained for CC and
NC bkgnd rejection
@ Still needs work

@ better
understanding of
variable
distributions
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Summary

@ We have a simulation of a MIND developed for the neutrino factory

@ MIND simulation has been used to develop SuperBIND.
@ Detector can achieve sterile neutrino physics goals.

e In absence of knowledge of systematics 100.
@ Next steps:

Develop hadron reconstruction.
Develop multi-variate analysis.

Quantify systematics.

Make improved user interface.
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