Detector Simulation and Performance

R. Bayes¹, A. Bross³, A. Cervera-Villanueva², M. Ellis^{4,5}, Tapasi Ghosh² A. Laing¹, F.J.P. Soler¹, Chris Tunnell⁶ and R. Wands³

¹University of Glasgow, ²IFIC and Universidad de Valencia, ³Fermilab, ⁴Brunel University, ⁵Westpac Institutional Bank, Australia, ⁶University of Oxford

September 21, 2012

Simulation Overview

Outlook and Future Development

Introduction

- Both $\nu_{\textit{e}}$ and $\bar{\nu}_{\mu}$ are present in the νSTORM beam
- Four oscillation detection modes are possible
 - **1** ν_{μ} appearance: $\nu_{e} \rightarrow \nu_{\mu}, \mu^{-}$ signal
 - 2 $\bar{\nu}_{\mu}$ disappearance: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}, \mu^{+}$ signal
 - **3** ν_{e} disappearance: $\nu_{e} \rightarrow \nu_{\mu}$, e^{-} signal
 - $\bar{\nu}_e$ appearance: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_e$, e^+ signal
- Central requirement is charge discrimination
- Requires a magnetic field and good detector efficiency
- A magnetized iron neutrino detector fulfills these requirements for a μ^\pm signal.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

- Both $\nu_{\textit{e}}$ and $\bar{\nu}_{\mu}$ are present in the νSTORM beam
- Four oscillation detection modes are possible
 - ν_{μ} appearance: $\nu_{e} \rightarrow \nu_{\mu}, \mu^{-}$ signal
 - 2 $\bar{\nu}_{\mu}$ disappearance: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}, \mu^{+}$ signal
 - **3** ν_{e} disappearance: $\nu_{e} \rightarrow \nu_{\mu}$, e^{-} signal
 - $\bar{\nu}_e$ appearance: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_e$, e^+ signal
- Central requirement is charge discrimination
- Requires a magnetic field and good detector efficiency
- A magnetized iron neutrino detector fulfills these requirements for a μ^\pm signal.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Detector Design

- Detector consists of layered iron and scintillator planes
- Iron plates 1 cm(2 cm) thick.
- Scintillator planes 2 cm thick.
 - Composed of scintillator bars 1 cm thick and 1 cm width.
 - Measure x and y position at each plane.
- Circular cross-section, 5 m diameter.
- 20 m long for 1 kton mass.
- Magnetization achieved with SCTL

→ ∃ → < ∃ →</p>

SuperBIND Simulation

- Based on MIND simulation for the Neutrino Factory
- Neutrino events simulated in GENIE.
- Detector geometry and materials simulated with GEANT4.
- Scintillator plane simulated as a polystyrene slab.
 - hits grouped into discrete bars and attenuate in digitization.
- Use toroidal field: model from fit to simulation of field.

Reconstruction

- Uses a Kalman filter for pattern recognition and track fitting.
- Longest set of single hits identified as muon.
- Further hits filtered into track.
- Fits assume
 - range of track as estimate of momentum .
 - sum of deviation of track from straight-line in magnetic field estimates the charge.
- Only the muon track is fit.
- No hadron reconstruction from digitized events.

Reconstruction

- Uses a Kalman filter for pattern recognition and track fitting.
- Longest set of single hits identified as muon.
- Further hits filtered into track.
- Fits assume
 - range of track as estimate of momentum .
 - sum of deviation of track from straight-line in magnetic field estimates the charge.
- Only the muon track is fit.
- No hadron reconstruction from digitized events.

Software Summary

- Software is modular.
- Parts are interchangeable.
- Information between simulation and reconstruction uses a "bhep" format.

Charge Current Selection

- Identify muon signals.
- Reject tracks from NC events and shower processes.
- Analysis simplified to six cuts.
 - Successful reconstruction
 - $p_{\mu} < 1.6 \times E_{\mu}$.
 - Track vertex before last 1 m of detector volume
 - Fitted track includes >60% of candidate hits.
 - Scaled curvature uncertainty is CC event like.
 - Number of candidate hits is CC event like.
- Greatest analytic power in likelihood cuts.

Muon Selection from Uncertainty in Curvature

- Distributions of $\left|\frac{\sigma_{q/p}}{q/p}\right|$ compiled for
 - CC events with correct charge
 - CC events with incorrect charge
 - NC events
- Distributions used to define a quantity

$$\mathcal{L}_{q/p} = \log \frac{P(\sigma_{q/p}/(q/p)|CC))}{P(\sigma_{q/p}/(q/p)|NC))}$$

- Allow events with $\mathcal{L}_{q/p} > 0.5$.
- A "weak" cut to remove signal from background.

< 6 b

.

Muon Selection from Number of Hits

- Number of candidate hits in muon trajectory compiled for
 - CC events
 - NC events
- Distributions used to define a quantity

$$\mathcal{L}_{CC} = \log \frac{P(\textit{N}_{cand} | \textit{CC}))}{P(\textit{N}_{cand} | \textit{NC}))}$$

- Allow events with $\mathcal{L}_{CC} > 6.5$
- A very strong cut to remove background.
- Also good at eliminating low energy signal.

Efficiency and Background Rejection

1 cm Plate

2 cm Plate

- 1 cm Fe plates and 2 cm Fe plates considered.
- 1 cm plate initially favoured to improve energy threshold.
- Rejection of charge mis-ID events better in 2 cm plate.
- Improvement due to the larger magnetic field.

Efficiency and Background Rejection

1 cm Plate

2 cm Plate

- 1 cm Fe plates and 2 cm Fe plates considered.
- 1 cm plate initially favoured to improve energy threshold.
- Rejection of charge mis-ID events better in 2 cm plate.
- Improvement due to the larger magnetic field.

Detector Response

Full energy reconstruction still lacking.

$$E_{\nu} = \frac{m_{N}E_{\mu} + \frac{1}{2}(m_{N'}^{2} - m_{N}^{2} - m_{\mu}^{2})}{m_{N} - E_{\mu} + \rho_{\mu}\cos\theta} \text{ for QES events, or}$$

$$E_{\nu} = E_{\mu} + E_{had}, E_{had} \text{ is smeared by } \frac{\delta E_{had}}{E_{had}} = \frac{0.55}{c\sqrt{E_{had}}} + 0.03$$
niversity of Glasgow)
Detector Simulation and Performance
September 21, 2012
12/17

Sensitivity to Sterile Neutrinos

- Above results synthesized by Chris Tunnel into sensitivities
- 10σ goal is reasonable achieved.

- Only statistical uncertainties included.
- Consideration of systematic errors required.

3 > 4 3

Short Term Progress

- Improvements made parasitically to NuFact MIND development
- Fit multiple trajectories.
 - Allow for muon reconstruction at lower momenta.
 - Identify set of hadron hits.
- Introduce multi variate analysis for CC selection
 - Use more variables than N_{hits}
 - Possible variables include mean energy deposition and variation in energy deposition.
- Quantify systematic uncertainties
 - Background due to cosmic rays.
 - Cross-section uncertainties.
 - Fiducial uncertainty.

A (10) A (10)

• Figures from Tapasi Ghosh, 4th Annual EUROnu Meeting.

- Secondary tracks observed in DIS and QES events.
- Reduces event into series of trajectories
 - Longest set of hits identified.
 - Hits filtered into trajectory.
 - Repeat with remaining hits.
 - Stop when less than 5 hits are left.
- Working on the best way to use this information.

• Figures from Tapasi Ghosh, 4th Annual EUROnu Meeting.

- Secondary tracks observed in DIS and QES events.
- Reduces event into series of trajectories
 - Longest set of hits identified.
 - Hits filtered into trajectory.
 - Repeat with remaining hits.
 - Stop when less than 5 hits are left.
- Working on the best way to use this information.

 Figures from Tapasi Ghosh, 4th Annual EUROnu Meeting.

- Secondary tracks observed in DIS and QES events.
- Reduces event into series of trajectories
 - Longest set of hits identified.
 - Hits filtered into trajectory.
 - Repeat with remaining hits.
 - Stop when less than 5 hits are left.
- Working on the best way to use this information.

 Figures from Tapasi Ghosh, 4th Annual EUROnu Meeting.

- Secondary tracks observed in DIS and QES events.
- Reduces event into series of trajectories
 - Longest set of hits identified.
 - Hits filtered into trajectory.
 - Repeat with remaining hits.
 - Stop when less than 5 hits are left.
- Working on the best way to use this information.

Multi-variate Analysis

- Considered 6 variables
- Trained for CC and NC bkgnd rejection
- Still needs work
 - better understanding of variable distributions

Multi-variate Analysis

- Considered 6 variables
- Trained for CC and NC bkgnd rejection
- Still needs work
 - better understanding of variable distributions

16/17

Multi-variate Analysis

- Considered 6 variables
- Trained for CC and NC bkgnd rejection
- Still needs work
 - better understanding of variable distributions

- Approximate NC background analysis
- Variables in CC background analysis are not suitable.

R. Bayes (University of Glasgow)

3 > 4 3

Summary

- We have a simulation of a MIND developed for the neutrino factory
- MIND simulation has been used to develop SuperBIND.
- Detector can achieve sterile neutrino physics goals.
 - In absence of knowledge of systematics 10σ .
- Next steps:
 - Develop hadron reconstruction.
 - Develop multi-variate analysis.
 - Quantify systematics.
 - Make improved user interface.

< 回 > < 三 > < 三 >