The Eagle has landed – what now?

Patrick Huber

Center for Neutrino Physics at Virginia Tech

NuSTORM Workshop September 21-22, 2012, Fermilab

Scenario

Let's assume nuSTORM makes a 10 sigma discovery

- We have seen $\nu_e \rightarrow \nu_\mu$ transitions of order $P \sim 0.003$ (consistent with LSND)
- We assume we deal with 3 + N neutrinos
- We further assume that one $\Delta m^2 \simeq 1 \, {\rm eV}$ This raises the following questions
 - Is it sterile neutrinos?
 - How many sterile neutrinos?
 - Is there CP violation?

First steps

- First thing to do is to look at $\bar{\nu}_e \to \bar{\nu}_\mu$ if, $P \neq P$ \Rightarrow CP violation $\Rightarrow N > 1$ with $\Delta m^2 \simeq 1 \,\text{eV}$
- Next look at disappearance since

 $P(\nu_e \to \nu_\mu) \le 4P(\nu_e \to \nu_e)P(\nu_\mu \to \nu_\mu)$

More tests

• Neutral current disappearance – not so easy since flux is supperpositon of ν_{μ} and ν_{e} and hence NC events will measure some linear combinations of

$$\alpha P(\nu_e \to \nu_e) + \beta P(\bar{\nu}_\mu \to \bar{\nu}_\mu)$$

Would muon polarization help? Since you can modulate α and β in a well defined way.

- 3+N predicts sizeable $\nu_{\tau}\text{-appearance}$ due to maximal mixing of μ and τ

 $P(\nu_e \to \nu_\tau) \simeq 1/2P(\nu_e \to \nu_\mu)$

Impact on long baselines

Since the atmospheric $\Delta m_{31}^2 \ll \Delta m^{4x}$ there will be only averaged sterile oscillations at long baselines.

Donini,Lusignoli,Meloni, hep-ph/0107231

Thus, we expect "shifts" of mixing angles but no additional CP effects