
Large θ13
Challenge and Opportunity

Patrick Huber

Center for Neutrino Physics at Virginia Tech

Joint Experimental-Theoretical Seminar

September 21, 2012, Fermilab

P. Huber – VT-CNP – p. 1



θ13 is large!
The Daya Bay result is

sin2 2θ13 = 0.089± 0.010(stat)± 0.005(syst) ,

which translates into a more than 5σ exclusion of
θ13 = 0, confirmed by RENO.

NB – a year ago we had only2σ indications.
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Implications
In general, this raises the following questions

• Is neutrino physics essentially done?
• Will the mass hierarchy have been determined

before the next generation of long-baseline
experiments?

• Are new experiments beyond NOνA and T2K
necessary to discover CP violation?

• Are superbeams sufficient for precision neutrino
physics?

Any of this questions is both a challenge and
opportunity!

P. Huber – VT-CNP – p. 3



The future of θ13
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P. Coloma, A. Donini, E. Fernandez-
Martinez, P. Hernandez, arXiv:1203.5651

FAPPθ13 will be known to very
high accuracy

At sin2 2θ13 = 0.1 the measure-
ment error at T2K will be 10%

At sin2 2θ13 = 0.1 the measure-
ment error at Daya Bay will be
<5%

Agreement of values ofθ13 from
reactors (disappearance) and
beams (appearance) constitutes
a critical test of the 3 flavor
framework
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Large θ13 and new physics
In looking for new physics (NP) we generally have

P = |ASM +ANP|2 = A2
SM + 2ASMANP + A2

NP

With largeθ13 we haveASM ≫ ANP and thus

P ≃ A2
SM + 2ASMANP

which depends linearly on the new physics amplitude,
ANP

Note, there is not reason to expect the NP to be CP
conserving.

P. Huber – VT-CNP – p. 5



Neutrinos are massive – so what?

Neutrinos in the Standard Model (SM) are strictly
massless, therefore the discovery of neutrino
oscillation, which implies non-zero neutrino masses
requires the addition of new degrees of freedom.
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We always knew they are . . .
The SM is an effective field theory,i.e. at some high
scaleΛ new degrees of freedom will appear

LSM +
1

Λ
L5 +

1

Λ2
L6 + . . .

The first operators sensitive to new physics have
dimension 5. It turns out there is only one dimension
5 operator

L5 =
1

Λ
(LH)(LH) → 1

Λ
(L〈H〉)(L〈H〉) = mννν

Thus studying neutrino masses is, in principle, the
most sensitive probe for new physics at high scales
Weinberg
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Effective theories
The problem in effective theories is, that there area
priori unknown pre-factors for each operator

LSM +
#

Λ
L5 +

#

Λ2
L6 + . . .

Typically, one has# = O(1), but there may be
reasons for this being wrong

• lepton number may be conserved→ no Majorana
mass term

• lepton number may be approximately conserved
→ small pre-factor forL5

Therefore, we do not know the scale of new physics
responsible for neutrino masses.
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Flavor models
Simplest un-model – anarchyMurayama, Naba, DeGouvea

dU = ds212 dc
4
13 ds

2
23 dδCP dχ1 dχ2

predicts flat distribution inδCP

Simplest model – Tri-bimaximal mixingHarrison,
Perkins, Scott
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to still fit data, obviously corrections are needed –
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Sum rules
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current best fit values and errors
for Θ12, Θ13 and Θ23 taken from
Fogli et al. 2012

15é

3σ resolution of 15◦ distance requires 5◦ error. NB – smaller error on

θ12 requires dedicated experiment like Daya Bay II

Antusch, King
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What we want to learn
In the context of neutrino oscillation experiments

• δCP

• mass hierarchy
• θ23 = π/4, θ23 < π/4 or θ23 > π/4?
• Resolution of LSND and the other short-baseline

anomalies– not covered in this talk

• New physics?

Given the current state of the theory of neutrinos we
can not say with confidence that any one quantity is
more fundamental than any other.
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Phenomenology of 3×3 active
oscillations
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CP violation
Like in the quark sector mixing can cause CP
violation

P (να → νβ)− P (ν̄α → ν̄β) 6= 0

The size of this effect is proportional to

JCP =
1

8
cos θ13 sin 2θ13 sin 2θ23 sin 2θ12 sin δ

but the asymmetry

P (να → νβ)− P (ν̄α → ν̄β)

P (να → νβ) + P (ν̄α → ν̄β)
∝ 1

sin 2θ13

The experimentally most suitable transition to study
CP violation isνe ↔ νµ.
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Matter effects
The charged current interaction ofνe with the
electrons creates a potential forνe

A = ±2
√
2GF · E · ne

where+ is for ν and− for ν̄.
This potential gives rise to an additional phase forνe
and thus changes the oscillation probability. This has
two consequences

P (να → νβ)− P (ν̄α → ν̄β) 6= 0

even ifδ = 0, since the potential distinguishes
neutrinos from anti-neutrinos.

P. Huber – VT-CNP – p. 14



Matter effects
The second consequence of the matter potential is that
there can be a resonant conversion – the MSW effect.
The condition for the resonance is

∆m2 ≃ A ⇔ EEarth
res = 6− 8GeV

Obviously the occurrence of this resonance depends
on the signs of both sides in this equation. Thus
oscillation becomes sensitive to the mass ordering

ν ν̄

∆m2 > 0 MSW -
∆m2 < 0 - MSW
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Consequences for experiments

• need to measure 2 out ofP (νµ → νe),
P (ν̄µ → ν̄e), P (νe → νµ) andP (ν̄e → ν̄µ)

• need more than 1 energy and/or 1 baseline
• matter resonance at6− 8GeV

• matter effects sizable forL > 1 000 km

• largeθ13 implies small CP asymmetries
⇒ need for small systematics
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Are new experiments still necessary?
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Status quo

Fogli, et al., arXiv:1205.5254

NB – 1σ range forδ = 30− 35◦ P. Huber – VT-CNP – p. 18



CPV without new experiments?
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PH, M. Lindner, T. Schwetz, W. Winter, JHEP 11 044 (2009),
arXiv:0907.1896.

Barely reaches3σ for mass hierarchy, and this is the
most favorableδCP !
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CPV without new experiments?
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PH, M. Lindner, T. Schwetz, W. Winter, JHEP 11 044 (2009),
arXiv:0907.1896.
Includes Project X and T2K running at 1.7 MW.
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Neutrino sources
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Traditional beam
Neutrino beam fromπ-decay

DetectionOscillationSource
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• primaryνµ flux constrained to 5-15%
• νe component known to about 20%
• anti-neutrino beam systematically different –

large wrong sign contamination
• νe difficult to distinguish from NC events
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νe/νµ x-sections
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arXiv:0711.2950

Appearance experiments
using a (nearly) flavor
pure beam cannot rely
on a near detector to pre-
dict the signal at the far
site!

Large θ13 most difficult
region.
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QE energy reconstruction

Lalakulich, Mosel, arXiv:1208.3678.

Nuclear effects change
the relation between true
neutrino energy and lep-
ton energy

Inferring the CP phase from QE spectrum seems quite
difficult – no quantitative analysis with respect to
oscillation physics, yet.

Not obvious that near detectors alone can solve this
problem.
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Neutrino factory beam
DetectionOscillationSource
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This requires a detector which can distinguishµ+

from µ− ⇒ magnetic field of around 1T

• beam known to %-level or better
• muon detection very clean
• multitude of channels available
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Long-baseline oscillations
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MH from existing experiments
• NOvA continues running at 14 kton and 700 kW to 2025
• T2K continues running at 22.5 kton with 700 kW to 2025
• NOvA achieves a further 20% sensitivity gain
• T2K achieves a further 10% sensitivity gain

R. Patterson, NuFact 12

Includes Daya
Bay projected
final error
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Hyper-K
Atmospheric data only
Assumesθ13 known from reactors
Assumesθ23 known from beam
Leavesδ free

Hyper-K LOI, arXiv:1109.3262
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PINGU
Phased IceCube Next Generation upgrade
20 strings with∼1000 optical modules
Energy threshold of around 1 GeV

Akhmedov, Razzaque, Smirnov
arXiv:1205.7071

5-10σ for all CP phases

Cheap & fast

Feasibility under study
by the IceCube collabo-
ration
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Indian Neutrino Observatory
40 kt magnetized iron detector (like MONOLITH)

Blennow, Schwetz, arXiv:1203.3388

Improved angular and
energy resolution in
the multi-GeV range

neutrino/antineutrino
separation from muon
charge
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MH from reactors
Interference of the two mass scales
Choubey, Petcov, Piai, 2003
Baseline of∼60 km and exposure ofO(100) kt years

Learnedet al., hep-ex/0612022

Daya Bay II

Question of systematics
control – energy scale
Qianet al., 2012
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Mass hierarchy corollary
• Given the large value ofθ13 mass hierarchy can

be done in many different ways
• PINGU, ICAL, Daya Bay 2, HK atmospheric

data, . . .
• It therefore seems very likely that the mass

hierarchy will be determined at some level w/o a
new long baseline experiment

P. Huber – VT-CNP – p. 32



Mass hierarchy forecast

signal syst.
MIND LE 1.4%

LBNE 1%
LBNE+Project X 1%

LBNO - 33kt 5%
LBNO - 100kt 5%

BB100 2%
BB100+SPL 2%

2025
T2K, Daya Bay, NOîA
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Mass hierarchy is no longer a distinguishing feature!
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CP violation vs CP precision

IDS-NF IDR
+ can showθ13 dependence

+ naturally include degeneracies

- region of no sensitivity

Colomaet al. 2012
+ can showδ dependence

+ no gaps in sensitivity

- hard to include degeneracies
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Figure of merit
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How to compare facilities?

• θ13 is measured
• mass hierarchy likely will be measured

I will use CP precision as figure of merit
• experimentally most challenging – high bar
• directly related to the unitarity triangle
• most susceptible to new physics
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The following slides contain results

obtained in collaboration with

P. Coloma, J. Kopp and W. Winter.

A preprint will appear soon.
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CP precision and systematics
We specifically simulate near and far detectors

We use common assumptions for all experiments on
• cross sections split into QE, RES and DIS for

each flavor and neutrinos and antineutrinos
• cross section ratios between e andµ flavors for

QE, RES and DIS and neutrinos and antineutrinos
• fiducial volume and near/far extrapolation errors

We use experiment type specific errors for
• fluxes
• beam backgrounds
• detector backgrounds
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Setups
Setup E

peak
ν L OA Detector kt MW Decays/yr (tν ,tν̄ )

B
en

ch
m

ar
k BB350 1.2 650 – WC 500 – 1.1(2.8)×10

18 (5,5)

NF10 5.0 2 000 – MIND 100 – 7×10
20 (10,10)

WBB 4.5 2 300 – LAr 100 0.8 – (5,5)

T2HK 0.6 295 2.5◦ WC 560 1.66 – (1.5,3.5)

A
lte

rn
at

iv
e

BB100
0.3 130

–
WC 500

– 1.1(2.8)×10
18 (5,5)

+ SPL – 4 – (2,8)

NF5 2.5 1 290 – MIND 100 – 7×10
20 (10,10)

LBNEmini 4.0 1 290 – LAr 10 0.7 – (5,5)

NOvA+ 2.0 810 0.8◦ LAr 30 0.7 – (5,5)

NB – neutrino/antineutrino running at NF10/NF5 is simultaneous
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Systematics I

Disappearance data
can play the role of
near detector if three
flavor framework is
assumed

NF10 clearly out-
performs all other
options
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Systematics II

Near detector crucial
for new physics sear-
ches

NOvA+ higher risk
from systematics

Current∆δ is 30-35◦

Fogli et al., 2012
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CP precision
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P. Coloma, PH, J. Kopp, W. Winter, in preparation

2020 – T2K, NOνA and Daya Bay
nominal runs

LBNE – 1300 km, 34 kt
0.7 MW, 2 × 10

8 s

LBNO – 2300 km, 100 kt
0.8 MW, 1 × 10

8 s

T2HK – 295 km, 560 kt
0.7 MW, 1.2 × 10

8 s

all masses are fiducial

LBNO EOI submitted to CERN –

20 kt LAr + MIND, similar beam

power to above

0.025 IDS-NF – 700kW, no cooling,2× 108 s running time, 10-15 kt detector
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Summary – but not finished yet
• New facilities are indispensable to fully exploit

the discovery of neutrino oscillation and to study
the short-baseline anomalies

• Mass hierarchy at largeθ13 is no longer a main
decision criterion

• CP violation is never easy to measure – especially
for the largest values ofθ13

• muon based options clearly outperform any other
technology both for short- and long-baseline
physics

• attractive staging scenario –νSTORM, low
luminosity neutrino factory, full neutrino factory,
. . .
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A comment on staging –
a tale from German history

Konrad von
Hochstaden
Archbishop of
Cologne

1248 A.D. Konrad inaugurated a civil
engineering project to build a Gothic cathedral...

1517 A.D. – M. Luther announces a “new
theory” and construction came to a halt in the
early 16th century
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Phase I

Project status
1824 A.D.

The community (= citizens of Cologne) managed
to raise 2/3 of the funds required, about $1B in
today’s currency, and construction resumed.
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Phase N

1880 A.D. the
cathedral was
finished

a mere 632 years after inception of the project...

P. Huber – VT-CNP – p. 45



Lessons learned
Assuming that our future is in building Gothic
cathedrals, . . .

• good motivation transcending day-to-day politics
• multi-generational, phased approach
• phasen does not imply that phasen+ 1 follows (immediately)
• re-assess program based on new developments
• community involvement

As a consequence, each phase will have to be able to
stand on its own or on then− 1 previous phases.

Note, that the staff and funding of the cathedral works
(Dombauhütte) always shrank and grew in proportion
to the actual activities!

P. Huber – VT-CNP – p. 46



One way forward
A staged, muon based program

• νSTORM – resolve the SBL anomalies and if
discovery, precise measurements of NP, necessary
to control systematics in superbeam experiments

• Low luminosity neutrino factory (700kW beam,
no cooling, 10-20 kt detector) – on par with most
superbeams

• Full neutrino factory – ultimate precision
• Higgs factory (s-channel, invisible width)

provides excellent, unique physics in each phase!

and if LHC results point to TeV-scale new physics
⇒ Muon Collider
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Backup Slides
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CP precision – redux

P. Coloma, A. Donini, E. Fernandez-Martinez, P. Hernandez,
arXiv:1203:5651
BB100 strongly affected by intrinsic degeneracy –
counting experiment
SPL and T2HK have very similar performances for
similar exposure
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νSTORM
Low energy, low luminosity muon storage ring.
Provides with1.7× 1018 µ+ stored, the following
oscillated event numbers

νe → νµ CC 330
ν̄µ → ν̄µ NC 47000
νe → νe NC 74000
ν̄µ → ν̄µ CC 122000
νe → νe CC 217000

and each of these channels has a more than10σ
difference from no oscillations

With more than 2000 000νe CC events in the near
detector a %-levelνe cross section measurement
should be possible
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νSTORM – νµ appearance
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Systematics – detailed inputs
SB BB NF

Systematics Opt. Def. Cons. Opt. Def. Cons. Opt. Def. Cons.

Fiducial volume ND 0.2% 0.5% 1% 0.2% 0.5% 1% 0.2% 0.5% 1%

Fiducial volume FD 1% 2.5% 5% 1% 2.5% 5% 1% 2.5% 5%

(incl. near-far extrap.)

Flux error signalν 5% 7.5% 10% 1% 2% 2.5% 0.1% 0.5% 1%

Flux error backgroundν 10% 15% 20% correlated correlated

Flux error signal̄ν 10% 15% 20% 1% 2% 2.5% 0.1% 0.5% 1%

Flux error background̄ν 20% 30% 40% correlated correlated

Background uncertainty 5% 7.5% 10% 5% 7.5% 10% 10% 15% 20%

Cross secs× eff. QE† 10% 15% 20% 10% 15% 20% 10% 15% 20%

Cross secs× eff. RES† 10% 15% 20% 10% 15% 20% 10% 15% 20%

Cross secs× eff. DIS† 5% 7.5% 10% 5% 7.5% 10% 5% 7.5% 10%

Ratioνe/νµ QE⋆ 3.5% 11% – 3.5% 11% – 3.5% 11% –

Ratioνe/νµ RES⋆ 2.7% 5.4% – 2.7% 5.4% – 2.7% 5.4% –

Ratioνe/νµ DIS⋆ 2.5% 5.1% – 2.5% 5.1% – 2.5% 5.1% –

Matter density 1% 2% 5% 1% 2% 5% 1% 2% 5%
P. Huber – VT-CNP – p. 52
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