The search for the proton electric dipole moment (EDM) using an electric storage ring On behalf of the Storage Ring EDM Collaboration Edward J. Stephenson Indiana University March 23, 2023 presented at the P5 Town Hall 2023 Spin requires any electric dipole moment (EDM) to be along its axis. This arrangement violates time reversal and CP invariance. Experiment: Put EDM in electric field, watch it rotate. Sensitivity goal: 10⁻²⁹ e⋅cm Physics reach (Marciano): $\Lambda_{NP} > 3000 \text{ TeV}$ At this level, a new source of CP-violation would be needed. This may have implications for the matter -antimatter asymmetry of the universe. Snowmass EDM references: arXiv 2203.08103, 2209.08401 #### History of nucleon EDM upper bounds proton taken from ¹⁹⁹Hg limit using a screening calculation goal of experiment by end of decade #### **Storage ring features:** Facility opportunity at BNL Electric storage ring Frozen spin: p=0.7007 GeV/c makes spin rotate with velocity Start with spin along velocity, then signal is rising vertical polarization component. Simultaneous beams in both directions for error rejection Ring lattice designed by V. Lebedev. EDM along spin axis $$\vec{\Omega}_{EDM} = \frac{\eta q}{2mc} (\vec{E} + c\vec{\beta} \times \vec{B})$$ #### The proton EDM in the AGS tunnel at BNL Running compatible with other experiments, projects. 50 MEV LINAC (B-914) Turn to be added for CW beam. Circumference: 800m Max E-field: 4.5MV/m AGS tunnel J. Benante and W. Morse Storage ring fits into a 40-cm tube mounted on the wall to the right. #### Mounting concept: need 40-cm diameter pipe on shelf # tunnel at BNL **AGS** ring Circumference: 800m Max E-field: 4.5MV/m AGS tunnel J. Benante and W. Morse Storage ring fits into a 40-cm tube mounted on the wall to the right. Visitors from CPEDM (CERN and COSY) Collaboration meeting Nov. 11, 2014 #### The storage ring proton EDM experiment Jim Alexander⁷, Vassilis Anastassopoulos³⁶, Rick Baartman²⁸, Stefan Baeßler^{39,22}, Franco Bedeschi¹⁹, Martin Berz¹⁷, Michael Blaskiewicz⁴, Themis Bowcock³³, Kevin Brown⁴, Dmitry Budker^{9,31}, Sergey Burdin³³, Brendan C. Casey⁸, Gianluigi Casse³⁴, Giovanni Cantatore³⁸, Timothy Chupp³⁴, Hooman Davoudiasl⁴, Dmitri Denisov⁴, Milind V. Diwan⁴, George Fanourakis²⁰, Antonios Gardikiotis^{30,36}, Claudio Gatti¹⁸, James Gooding³³, Renee Fatemi³², Wolfram Fischer⁴, Peter Graham²⁶, Frederick Gray²³, Selcuk Haciomeroglu⁶, Georg H. Hoffstaetter, Haixin Huang, Marco Incagli, Hoyong Jeong, David Kaplan, Marin Karuza³⁷, David Kawall²⁹, On Kim⁶, Ivan Koop⁵, Valeri Lebedev^{14,8}, Jonathan Lee²⁷, Soohyung Lee⁶, Alberto Lusiani^{25,19}, William J. Marciano⁴, Marios Maroudas³⁶, Andrei Matlashov⁶, Francois Meot⁴, James P. Miller³, William M. Morse⁴, James Mott^{3,8}, Zhanibek Omarov^{15,6}, Cenap Ozben¹¹, Seong Tae Park⁶, Giovanni Maria Piacentino³⁵, Boris Podobedov⁴, Matthew Poelker¹², Dinko Pocanic³⁹, Joe Price³³, Deepak Raparia⁴, Surjeet Rajendran¹³, Sergio Rescia⁴, B. Lee Roberts³, Yannis K. Semertzidis *6,15, Alexander Silenko¹⁴ Amarjit Soni⁴, Edward Stephenson¹⁰, Riad Suleiman¹², Michael Syphers²¹, Pia Thoerngren²⁴, Volodya Tishchenko⁴, Nicholaos Tsoupas⁴, Spyros Tzamarias¹, Alessandro Variola¹⁸, Graziano Venanzoni¹⁹, Eva Vilella³³, Joost Vossebeld³³, Peter Winter², Eunil Won¹⁶, Anatoli Zelenski⁴, and Konstantin Zioutas³⁶ ¹Aristotle University of Thessaloniki, Thessaloniki, Greece ²Argonne National Laboratory, Lemont, Illinois, USA ³Boston University, Boston, Massachusetts, USA ⁴Brookhaven National Laboratory, Upton, New York, USA ⁵Budker Institute of Nuclear Physics, Novosibirsk, Russia ⁶Center for Axion and Precision Physics Research, Institute for Basic Science, Daejeon, Korea ⁷ Cornell University, Ithaca, New York, USA ⁸ Fermi National Accelerator Laboratory, Batavia, Illinois, USA ⁹ Helmholtz-Institute Mainz, Johannes Gutenberg University, Mainz, Germany ¹⁰ Indiana University, Bloomington, Indiana, USA ¹¹ Istanbul Technical University, Istanbul, Turkey ¹²JLAB, Newport News, Virginia, USA ¹³ Johns Hopkins University, Baltimore, Maryland, USA ¹⁴ Joint Institute for Nuclear Research, Dubna, Russia ¹⁵Physics Dept., KAIST, Daejeon, Korea ¹⁶Physics Dept., Korea University, Seoul, Korea ¹⁷ Michigan State University, East Lansing, Michigan, USA ¹⁸National Institute for Nuclear Physics (INFN-Frascati), Rome, Italy ¹⁹National Institute for Nuclear Physics (INFN-Pisa), Pisa, Italy ²⁰NCSR Demokritos Institute of Nuclear and Particle Physics, Athens, Greece ²¹Northern Illinois University, DeKalb, Illinois, USA ²²Oak Ridge National Laboratory, Oak Ridge, TN, USA ²³Regis University, Denver, Colorado, USA ²⁴Royal Institute of Technology, Division of Nuclear Physics, Stockholm, Sweden ²⁵Scuola Normale Superiore di Pisa, Pisa, Italy ²⁶Stanford University, Stanford, California, USA ²⁷Stony Brook University, Stony Brook, New York, USA ²⁸ TRIUMF, Vancouver, British Columbia, Canada ²⁹ UMass Amherst, Amherst, Massachusetts, USA ³⁰ Universität Hamburg, Hamburg, Germany ³¹University of California at Berkeley, Berkeley, California, USA ³² University of Kentucky, Lexington, Kentucky, USA 33 University of Liverpool, Liverpool, UK ³⁴ University of Michigan, Ann Arbor, Michigan, USA ³⁵University of Molise, Campobasso, Italy ³⁶University of Patras, Dept. of Physics, Patras-Rio, Greece ³⁷University of Rijeka, Rijeka, Croatia ³⁸University of Trieste and National Institute for Nuclear Physics (INFN-Trieste), Trieste, Italy ³⁹University of Virginia, Charlottesville, Virginia, USA Recent status report: 73 co-authors, 39 institutions #### The storage ring proton EDM experiment Jim Alexander⁷, Vassilis Anastassopoulos³⁶. Baeßler^{39,22}, Franco Bedeschi¹⁹, Martin Berz¹⁷, M Bowcock³³, Kevin Brown⁴, Dmitry Budker^{9,31}, S Casey⁸, Gianluigi Casse³⁴, Giovanni Cantatore³⁸ Davoudiasl⁴, Dmitri Denisov⁴, Milind V. Diwan⁴, Gardikiotis^{30,36}, Claudio Gatti¹⁸, James Gooding Fischer⁴, Peter Graham²⁶, Frederick Grav²³, Selc Hoffstaetter⁷, Haixin Huang⁴, Marco Incagli¹⁹, Hoy Marin Karuza³⁷, David Kawall²⁹, On Kim⁶, Ivan Jonathan Lee²⁷, Soohyung Lee⁶, Alberto Lusiani Marios Maroudas³⁶, Andrei Matlashov⁶, Franco William M. Morse⁴, James Mott^{3,8}, Zhanibek O Seong Tae Park⁶, Giovanni Maria Piacentino³⁵, I Poelker¹², Dinko Pocanic³⁹, Joe Price³³, Deepak R Sergio Rescia⁴, B. Lee Roberts³, Yannis K. Semertz Amarjit Soni⁴, Edward Stephenson¹⁰, Riad Sulein Thoerngren²⁴, Volodya Tishchenko⁴, Nicholaos T Alessandro Variola¹⁸, Graziano Venanzoni¹⁹, Eva Peter Winter², Eunil Won¹⁶, Anatoli Zelenski⁴ > ¹Aristotle University of Thessaloniki, T ²Argonne National Laboratory, Lemo ³Boston University, Boston, Massachuseus, OSA ⁴Brookhaven National Laboratory, Upton, New York, USA ⁵Budker Institute of Nuclear Physics, Novosibirsk, Russia ⁶Center for Axion and Precision Physics Research, Institute for Basic Science, Daejeon, Korea ⁷Cornell University, Ithaca, New York, USA ⁸Fermi National Accelerator Laboratory, Batavia, Illinois, USA ⁹Helmholtz-Institute Mainz, Johannes Gutenberg University, Mainz, Germany ¹⁰Indiana University, Bloomington, Indiana, USA ¹¹Istanbul Technical University, Istanbul, Turkey Current activities outside US: UK: Design HV plates Türkiye: Simula lons Magnetic quads S. Korea: Simulations **Current activities inside US:** BNL: Cost estimates Ground stability Injection Systematic errors Indiana: Polarization experiments Axion search rsity, Baltimore, Maryland, USA uclear Research, Dubna, Russia KAIST, Daejeon, Korea orea University, Seoul, Korea sity, East Lansing, Michigan, USA ir Physics (INFN-Frascati), Rome, Italy lear Physics (INFN-Pisa), Pisa, Italy Iuclear and Particle Physics, Athens, Greece niversity, DeKalb, Illinois, USA Laboratory, Oak Ridge, TN, USA y, Denver, Colorado, USA vision of Nuclear Physics, Stockholm, Sweden Superiore di Pisa, Pisa, Italy ty, Stanford, California, USA ty, Stony Brook, New York, USA ver, British Columbia, Canada Amherst, Massachusetts, USA mburg, Hamburg, Germany Berkeley, Berkeley, California, USA cky, Lexington, Kentucky, USA Liverpool, Liverpool, UK an, Ann Arbor, Michigan, USA Molise, Campobasso, Italy ept. of Physics, Patras-Rio, Greece f Rijeka, Rijeka, Croatia National Institute for Nuclear Physics ieste), Trieste, Italy a, Charlottesville, Virginia, USA #### Recent status report: 73 co-authors, 39 institutions R&D results from Forschungszentrum Jülich Cooler Synchrotron #### **COSY** results - 1. With left-right detectors, forward-reverse polarization, there is enough redundancy to correct polarimeter systematic errors below 10 µrad (achieved, 4-day run). No obstacles see to further reductions to 1 µrad. [1] - 2. Although unstable against depolarization, field corrections extend polarization lifetime past 1000 s.^[2] - 3. Feedback tied to polarization phase in plane can hold spin direction constant to within 0.1 rad.[3] 4. A polarimeter prototype works.^[4] All tests were made with 0.97 GeV/c deuteron beam. - [1] NIM A 664, 49 (2012) - [3] PRL 119, 014801 (2017) - PRL 117, 054801 (2016) - [4] JINST 15, P12005 (2020) #### Features of ring design #### Reducing errors using symmetries:[1] Use beams going in opposite directions simultaneously. Large number (48) of ring sections. Ring sections with alternately focusing and defocusing magnetic sextupoles. Swap $k_1 - k_2$. Maintain flat ring using water level (good to <0.1 mm). Overlap counter-rotating beams to better than 0.01 mm by checking stray magnetic field. [1] Omarov, PRD 105, 032001 (2022) **'**26 '27 **'**30 **'23 '**24 '25 '28 **'29 '**31 **'33 '**32 Cost estimation underway Detailed design, procurement Construction starts [polarimeters, individual section, mass-produced parts Ring installation, alignment First beam (injection, bunching) Beams in opposite directions Polarization studies, first results Systematic adjustments Data running, publication #### **Summary:** Storage ring EDM project needs support to begin work at BNL. Electric storage ring operating at magic momentum looks feasible for a search on the proton to a sensitivity of 10^{-29} e·cm. No major technical obstacles are apparent. Experiment has reach of $\Lambda_{NP} > 3000 \text{ TeV}$ Design has been checked and appears robust. COSY ring with polarized beam was recently used to look for an axion resonance by scanning the RF frequency of the machine. This project has a future working on other physics experiments.^[1] ## END Thank you #### Ring parameters | Quantity | Value | |-------------------------------|------------------------| | Bending Radius R_0 | $95.49\mathrm{m}$ | | Number of periods | 24 | | Electrode spacing | $4\mathrm{cm}$ | | Electrode height | $20\mathrm{cm}$ | | Deflector shape | cylindrical | | Radial bending E -field | $4.4\mathrm{MV/m}$ | | Straight section length | $4.16\mathrm{m}$ | | Quadrupole length | $0.4\mathrm{m}$ | | Quadrupole strength | $\pm 0.21\mathrm{T/m}$ | | Bending section length | $12.5\mathrm{m}$ | | Bending section circumference | $600\mathrm{m}$ | | Total circumference | $800\mathrm{m}$ | | Cyclotron frequency | $224\mathrm{kHz}$ | | Revolution time | $4.46\mathrm{\mu s}$ | | $\beta_x^{\max}, \ \beta_y^{\max}$ | $64.54\mathrm{m},77.39\mathrm{m}$ | |--|-----------------------------------| | Dispersion, D_x^{max} | $33.81\mathrm{m}$ | | Tunes, Q_x , Q_y | 2.699, 2.245 | | Slip factor, $\frac{dt}{t}/\frac{dp}{p}$ | -0.253 | | Momentum acceptance, (dp/p) | $5.2 imes 10^{-4}$ | | Horizontal acceptance [mm mrad] | 4.8 | | RMS emittance [mm mrad], ϵ_x , ϵ_y | 0.214,0.250 | | RMS momentum spread | 1.177×10^{-4} | | Particles per bunch | 1.17×10^{8} | | RF voltage | $1.89\mathrm{kV}$ | | Harmonic number, h | 80 | | Synchrotron tune, Q_s | 3.81×10^{-3} | | Bucket height, $\Delta p/p_{\rm bucket}$ | 3.77×10^{-4} | | Bucket length | $10\mathrm{m}$ | | RMS bunch length, σ_s | $0.994\mathrm{m}$ | | Beam planarity | $0.1\mathrm{mm}$ | | CR-beam splitting | $0.01\mathrm{mm}$ | Karanth: arXiv: 2208.07203 Axion search uses non-frozen spin Ramp machine frequency Precession frequency (spin tune) scans axion frequency Resonance when frequencies cross: polarization jumps Simulated signal using RF Wien filter #### 90% confidence upper limit ### Physics reach of storage ring pEDM at $10^{-29} e \cdot \text{cm}$ - 1. Competitive sensitivity to New Physics up to 1000 TeV. - 2. Three orders of magnitude improvement in θ_{QCD} . - 3. Sensitive to certain Baryogenesis models: $\approx 10^{-28} e \cdot \text{cm}$ in MSSM. - 4. Best probe of Higgs CPV. - Two-loop Higgs coupling: $\tan \phi_{\rm NP} \approx \mathcal{O}(10^{-4})$. - x30 more sensitive than electrons with the same EDM. - 5. Direct axion-like dark matter or fifth force search. - Best experimental sensitivity at ultra-low frequency. - Also sensitive to dark energy or vector DM with a different experimental knob. - First-ever "direct" measurement/constraint of d_p . - \circ With 10^3 improvement from the best current d_n limit. - Complementary to atomic & molecular and optical (AMO) EDM experiments. E.g., complementary with the eEDM to sort out possible CPV sources. #### Dark Matter and Dark Energy "Wind" • DM/DE wind will look like an anomalous longitudin on the spin. P. Graham et al., PRD **103**, 055010 (2021) $(m_a t) \hat{\beta}$ • The best sensitivity with a radially polarized frozen- #### ALP-induced oscillating EDM P. Graham and S. Rajendran, PRD 88, 035023 (2013) P. Graham et al., PRD **103**, 055010 (2021) Tar + LALPATAM coupling JQCD Couplings with dark matter (DM) and dark energy (DE) $\circ \text{ALP-EDM } (g_{aN\gamma} a \hat{\sigma}_N \cdot \mathbf{E}) \Rightarrow \text{oscillating ED}^{\prime\prime} \stackrel{\text{at }}{\sim} 10^{-3} \text{COS}(m_a t) \hat{x}$ - Storage ring probes of axion-induced oscillating EDM. S. Chang et al., PRD 99, 083002 (2019) - A novel method using an rf Wien filter. On Kim and Y. Semertzidis, PRD **104**, 096006 (2021) - Parasitic measurement with pEDM experiment. - Low frequency: Periodogram analysis. The best sensitivity! - High frequency: Resonant rf Wien filter. #### Search for axion forces with pEDM #### Searching for axion forces with precision precession in storage rings 2210.17547 Prateek Agrawal, David E. Kaplan, On Kim, Surjeet Rajendran, Mario Reig We consider different types of storage rings as precision probes of axion-mediated monopole-dipole forces. We show that current and planned experiments aiming to measure magnetic and electric dipole moments of protons, muons and electrons very precisely may explore new parts of the parameter space beyond existing laboratory bounds and, in some cases, beyond astrophysical constraints. Remarkably, a light axion coupled to muons may explain the FNAL/BNL $(g-2)_{\mu}$ anomaly as an environmental effect -- the coherent axion field generated by the earth nucleons induces an extra contribution to the anomalous precession frequency of the muon explaining the discrepancy with respect to the SM prediction. Parasitic measurement with pEDM experiment. Also look at 2210.14959 and 2105.03422 for references. #### Storage Ring Probes of Axion Dark Matter • The axion feebly interacts with SM particles. $$\mathcal{L} \supset g_{a\gamma\gamma} a\mathbf{E} \cdot \mathbf{B} + g_{aff} \nabla a \cdot \widehat{\mathbf{S}} + g_{\mathrm{EDM}} a\widehat{\mathbf{S}} \cdot \mathbf{E}$$ Primakoff effect Axion gradient Oscillating nucleon EDM - If the axion is dark matter, it's abundant around us. - High-precision storage ring spin experiments are suitable to probe the last two interactions. - Search for DM/DE from the wind coupling: P. Graham et al., PRD 103, 055010 (2021). - Search for DM axion from the EDM coupling: S. P. Chang et al., PRD 99, 083002 (2019). - First implementation with deuterons: S. Karanth *et al.*, 2208.07293. - The physics signatures are basically the same: out-of-plane spin rotation (either frozen or precessing in the storage ring plane).