Cosmology & Neutrinos

P5 Town Hall at Fermilab & Argonne

Kev Abazajian University of California, Irvine

March 22, 2023

The Cosmological Neutrino

The second most abundant particle in the Universe* From thermal physics:

$$n_{\gamma} = \frac{\zeta(3)}{\pi^2} g T^3 \approx 411 \,\mathrm{cm}^{-3}$$
$$n_{\nu} = N_{\nu} \times \left(\frac{3}{11}\right) n_{\gamma} \approx 340 \,\mathrm{cm}^{-3}$$

*depends on dark matter particle mass...

Neutrino Cosmology has a Goal of Measuring Matter Clustering from Large to Small Scales

Cosmic Microwave Background from the **COBE** Satellite, 1992

-1<u>80</u>°

+90°

-90°

Large Scale Structure: the cosmological density perturbation spectrum

- Power spectrum of cosmological density fluctuations $P(k) = \langle |\delta_k|^2 \rangle$
- Predicted by inflation $P(k) \propto k^n \qquad n \lesssim 1$

Primordial Clustering: Cosmic Microwave Background gives a <u>Precision</u> Determination <u>at Large Scales</u>

$$P(k) = Ak^n$$

Planck Collaboration 2018:

 $\ln(10^{10}A_s) = 3.047 \pm 0.014 \qquad (0.46\%)$ $n = 0.9665 \pm 0.0038 \qquad (0.39\%)$

The Cosmological Matter Power Spectrum

Perturbations enter horizon:

How does
$$\bigwedge$$
 probe neutrinos?
 $n_{\nu} = N_{\nu} \times \left(\frac{3}{11}\right) n_{\gamma} \approx 340 \text{ cm}^{-3}$ (Assuming thermal equilibrium)
 $\nu = \sum m_i n_{\nu_i}$
 $p_{\nu} \approx \sum m_{\nu_i} m_{\nu_i}$
 $p_{\nu} \approx \sum m_{\nu_i} m_{\nu_i}$
 $p_{\nu} \approx \sum m_{\nu_i} m_{\nu_i}$
 $p_{\nu} \approx 2 m_{\nu_i} m_{\nu_i} m_{\nu_i}$
 $p_{\nu} \approx 2 m_{\nu_i} m_{\nu_i} m_{\nu_i}$
 $p_{\nu} \approx 2 m_{\nu_i} m_{\nu_i} m_{\nu_i} m_{\nu_i}$
 $p_{\nu} \approx 2 m_{\nu_i} m_{\nu_$

ρ

5

Growth of perturbations since matter domination...

$$\ddot{\delta}_m + 2H\dot{\delta}_m - 4\pi G\bar{\rho}\delta_m = 0$$

Growth factor of several orders of magnitude since matter/radiation equality, and...

Growth is suppressed for non-relativistic neutrinos below their freestreaming scale Abazajian & Kaplinghat, Ann. Rev. Nucl. Part. Sci. 66 (2016) 1, 401

Measuring Large Scale Structure P(k) & $\sum m_{1}$

Measuring P(k, z)

Observations' Sensitivity to LSS *P*(*k*,*z*)

Baryon Acoustic Oscillations

Peloso et al., arXiv:1505.07477

Baryon Acoustic Oscillations: SDSS Distance Ladder

Current Σm_{ν} Limits

Neutrino mass is degenerate with other cosmological parameters (Ω_m especially), so all cosmological data useful in improving constraints: CMB + CMB Lensing (Planck 2018) + Type Ia SNe (Pantheon) + BAO + RSD (SDSS DR12+DR16)

Estimating Upcoming Cosmological Neutrino Mass Sensitivities

$$\frac{\Delta P(k)}{P(k)} \approx 1\% \approx -8 \frac{\Omega_{\nu}}{\Omega_m}$$

Hu, Eisenstein & Tegmark 1998

 $\Omega_{\nu} \approx \frac{\sum m_{\nu_i}}{93 \ h^2 \ \text{eV}}$ $\implies \sigma \left(\Sigma m_{\nu} \right) \lesssim (1\%/8) \times \Omega_m \left(93h^2 \ \text{eV} \right)$ $\implies \sigma \left(\Sigma m_{\nu} \right) \lesssim 20 \ \text{meV}$

Kaplinghat et al PRL 2003 (CMB WL) Wang et al PRL 2005 (WL Clusters) De Bernardis et al. 2009 (Opt. WL) Joudaki & Kaplinghat 2011 (LSST) Basse et al. 2013 (Euclid) Wu et al. 2014 (CMB-S4 + DESI)

Sensitivity Forecasts for Neutrino Mass with Standard Model Extension Dependence

For BAO:

Extra radiation changes expansion rate from Perturbation evolution through baryon decoupling

N_{eff} Effects on CMB

Σm_{ν} and N_{eff} Forecast

C. Chang et al., arXiv:2203.07638 [Snowmass]

N_{eff}: Not just Light Relics

C. Chang et al., arXiv:2203.07638 [Snowmass]

Planck 2018 Strongly Prefers $\Sigma m_{\nu} = 0 \ (\Sigma m_{\nu} \stackrel{?}{\leq} 0)$

Tension Data Sets May Prefer Large Σm_{ν} or N_{eff}

• σ_8 Tension:

Planck 2018 + BOSS DR12 + KIDS-1000 selfcalibration (Sgier et al. arXiv:2110.03815):

$$\Sigma m_{\nu} = 0.51^{+0.21}_{-0.24} \text{ eV}$$

• *H*⁰ Tension:

Planck 2018 + BOSS DR16 + Pantheon + 2021 SH0eS *H*⁰ (Garcia Escudero+ arXiv: 2208.14435):

$$N_{\rm eff} = 3.48 \pm 0.12$$

Neutrino-less & Low Reheating Temperature Universes

- Neutrino-less universe: neutrinos convert to lighter particles on cosmological scales, evading LSS constraints (Beacom, Bell, Dodelson 2004)
- Low-Reheating Universe with massless relics from particle decay producing N_{eff} (Garcia Escudero et al. 2023)

Cosmology & Neutrinos:

- Scenario (A): $\Sigma m_v \& N_{\text{eff}}: 2-3\sigma + \text{measurements of}$ $\Sigma m_v = 58 \text{ meV} \text{ and } N_{\text{eff}} = 3.044$ in ~10 years
- Scenario (B):
 Surprises from Tensions
 & Model Dependencies

Visible Sterile v in the Low-Reheat Universe

