Closed captioning

A new frontier of precision physics: LHCb Upgrade II

Manuel Franco Sevilla

on behalf of the LHCb Collaboration *University of Maryland*

22nd March 2023

P5 Town Hall at Fermilab and Argonne FNAL, Batavia, IL

The LHCb experiment

~ A large collaboration

→ 21 countries, 96 institutes, 1572 members

~ US participation

- → Currently 6 institutes, 71 members
 - + NSF: Cincinnati, Maryland, MIT, Syracuse
 - + DOE/NSF nuclear: Los Alamos, Michigan

Hugely successful track record

- Access to <u>high mass</u> scales through flavor physics was key through development of SM
 - → No $K_L \rightarrow \mu\mu$ ⇒ c quark
 - → $\Delta m_K \Rightarrow m_c \sim 1.5 \text{ GeV}$
 - $\rightarrow \epsilon_K \Rightarrow$ t, b quarks
 - $\rightarrow \Delta m_B \Rightarrow m_t \geq 100 \text{ GeV}$
- ~ LHCb has demonstrated emphatically that the LHC is an ideal laboratory for flavor physics

First CP violation in charm

CKM angle γ

Flexible and broad program

Leading and critical contributions beyond core program

Upgrade

3 new trackers: Pixel VELO, UT, SciFi

Upstream Tracker (UT) with US leadership

Upgrade I: installed

Major project installed successfully and on budget

Exciting physics until 2032

Proposed Upgrade II

Run 6

2040

Framework

- ~ HL-LHC program until 2043
- ~ LHCb program limited by detector
 - → clear case for further upgrade

Expression of Interest CERN-LHCC-2017-003

Physics case CERN-LHCC-2018-027

Accelerator study CERN-ACC-NOTE-2018-0038

Run 2 Run 3 Run 5 Run 4 Run 1 Inst. luminosity $[10^{33} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}]$ 16 14 \$22 \$33 2030 2020 Year ATLAS/CMS Framework TDR Phase 2 CERN-LHCC-2021-012 scoping document to be prepared, followed by sub-system TDRs

CERN Research Board 2019

"The recommendation to prepare a framework TDR for the LHCb Upgrade-II was endorsed, noting that LHCb is expected to run throughout the HL-LHC era."

European Strategy Update 2020

"The full potential of the LHC and the HL-LHC, including the study of flavour physics, should be exploited"

Upgrade II: very large b-hadron samples

Updated from Bernlochner, MFS, Robinson, Wormser, RMP, 94, 015003 (2022)

Experiment	BABAR	Belle	Belle II	LHCb			
Experment	DADAIL	DADAR Dene		Run 1	Run 2	Runs 3–4	Runs 5–6
Completion date	2008	2010	2035	2012	2018	2032	2043
Center-of-mass energy	$10.58 \mathrm{GeV}$	$10.58/10.87 \; \mathrm{GeV}$	$10.58/10.87 \; \mathrm{GeV}$	7/8 TeV	13 TeV	$14 { m TeV}$	$14 \mathrm{TeV}$
$b\overline{b}$ cross section [nb]	1.05	1.05/0.34	1.05/0.34	$(3.0/3.4)\times10^5$	5.6×10^{5}	6.0×10^5	6.0×10^{5}
Integrated luminosity [fb ⁻¹]	424	711/121	$(50/4) \times 10^3$	3	6	40	300
B^0 mesons $[10^9]$	0.47	0.77	50	100	350	2,500	19,000
$B^+ \text{ mesons } [10^9]$	0.47	0.77	50	100	350	$2,\!500$	19,000
$B_s \text{ mesons } [10^9]$	_	0.01	0.5	24	84	610	4,600
Λ_b baryons $[10^9]$	_	_	_	51	180	1,300	9,800
$B_c \text{ mesons } [10^9]$	_	_	_	0.8	4.4	19	150

b-hadrons in acceptance

Upgrade I Upgrade II

Upgrade II would open an era of unprecedented precision

Complementing ATLAS/CMS in the search for a paradigm shifting discovery at the HL-LHC

Unitarity Triangle

- ~ LHCb Upgrade II will test the CKM paradigm with unprecedented accuracy
 - → Key improvements also needed from theory, lattice

Observable	LHCb 2025	Belle II	Upgrade II
γ , with $B_s^0 \to D_s^+ K^-$	4°	_	1°
γ , all modes	1.5°	1.5°	0.35°
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm S}^0$	0.011	0.005	0.003
ϕ_s , with $B_s^0 \to J/\psi \phi$	14 mrad	_	4 mrad
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	35 mrad	_	9 mrad
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	39 mrad		11 mrad
$a_{ m sl}^s$	10×10^{-4}		3×10^{-4}
$ V_{ub} / V_{cb} $	3%	1%	1%

CERN-LHCC-2018-027

World average 2021

LHCb-only after Upgrade II

Access to extremely rare processes

$$\sim$$
 Access to $C_7^{(')}$

$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_b (\bar{s}\sigma_{\mu\nu} P_R b) F^{\mu\nu} \qquad \mathcal{O}_{7'} = \frac{e}{16\pi^2} m_b (\bar{s}\sigma_{\mu\nu} P_L b) F^{\mu\nu}$$

- → Very sensitive to new physics
- \rightarrow NP could cause non-zero value of C_7

Achievable sensitivity will depend strongly on the performance of the LHCb Upgrade II ECAL in γ/e reco

~ CP violation in charm mixing

→ LHCb Upgrade II is only planned facility with realistic possibility to observe SM CPV in $D^0 - \bar{D}^0$ mixing

Characterizing unexpected effects

- → Thanks to powerful general purpose detector and flexible data taking
- \sim Eg, if $b \to c au
 u$ anomalies were to be confirmed
 - \rightarrow Upgrade II will allow precision measurements beyond $\mathcal{R}(D^{(*)})$

Access to all angular coefficients

Perhaps even $B_c^+ \to \tau^+ \nu$ theoretically very clean

Bernlochner, MFS, Robinson, Wormser, RMP, 94, 015003 (2022)

Detector challenge and 4D tracking

Goal Same detector performance as in Run 3

Challenge

Pile-up increases from 6 PVs to 42 PVs!

CERN-LHCC-2021-012

- ~ Will employ innovative technologies with key ingredients
 - **→** Granularity
 - → Fast timing (few tens of ps)
 - **→** Radiation hardness

VELO: \sim 55 µm pitch, ~50 ps per hit, fluence of $6 \times 10^{16} n_{eq}/cm^2$

5D calorimetry (x, y, z, E, t)

$$\sim$$
 Maintain $\frac{\sigma(E)}{E} \sim \frac{10\%}{\sqrt{E}} \oplus 1\%$

- ~ Radiation up to 1 MGy
- Increase central granularity
 - \rightarrow 4×4 cm² \rightarrow 1.5×1.5 cm²
- ∼ Mitigate pile-up with ~20 ps timing

Extensive R&D remaining Radiation hardness, PMT characterization, timing/imaging layer, optimization US involvement

Considering W/Pb +
GAGG crystal fibers
(central) and current
Shashlik (outer)

Timing/imaging layer could help deal with frequent overlaps

Other technologies

Rad-hard DMAPs

Monolithic Active Pixel sensors for UT/ Mighty Tracker, first time at LHC Low-cost commercial process, low material budget

MAGNET STATIONS (LS3)

New scintillating fiber stations on the inside of dipole magnet Improved low-pt tracking

US involvement

TORCH

[⊉]10mm

660mm

2500mm

PID for p < 10-20 GeV with 15 ps timing (70 ps per photon for ~30 photons)

MUON

μ-RWELL to handle high central rates, MWPCs outside

Trigger & Offline computing

- ~ Novel trigger system for Upgrade I
 - → Fully software trigger (RTA)
 - → HLT1 based on GPUs
- ~ Similar for **Upgrade II**... but at **200Tb/s**!
 - → HLT2 not feasible on CPUs
 - → Will require GPUs or FPGAs

Model assumptions				
	Upgrade I	Upgrade II		
$ext{Peak L } (cm^{-2}s^{-1})$	2×10^{33}	1.5×10^{34}		
Yearly integrated luminosity (fb^{-1})	10	50		
Logical bandwidth to tape (GB/s)	10	50		
Logical bandwidth to disk (GB/s)	3.5	17.5		
Running time (s)	5×10^{6}			
Trigger rate fraction (%)	26 / 68 / 6 Full / Turbo / TurC			
Ratio Turbo/Full event size	16.7%			
Ratio full/fast/param. MC	40:40:20			
CPU work per event full/fast/param. MC (HS06.s)	1200 / 400 / 20			
Number of simulated events	$4.8 \times 10^9 / \text{fb}^{-1} / \text{year}$			
Data replicas on tape	2 (1 for derived data)			
Data replicas on disk	2 (Turbo); 3 (Full, TurCal)			
MC replicas on tape	1 (MDST)			
MC replicas on disk	0.3 (MDST, 30% of the total dataset)			

- ~ Challenging offline computing requirements
 - → Upgrade I model not sustainable
 - → Issues similar to ATLAS & CMS Phase II (Run 4)
 - → Coordination with WLCG and HEP Software Foundation on mitigation

Status and timeline

- ~ Support from full LHCb collaboration =
- Process from FTDR to installation defined with LHCC
 - → R&D underway leading to subdetector TDRs
 - → In CERN's baseline schedule, LS4 1→2 years

Detector	Countries involved
VELO	BR, CERN, ES, FR, IT, NL, PL, RU, SE, UK
$\overline{\mathrm{UT}}$	CN, FR
Magnet Stations	PL, US
Mighty Tracker (SciFi + MAPS)	BR, CH, DE, ES, SE, UK
RICH	CERN, IT, PL, RO, SI, UK
TORCH	CERN, UK, SI
ECAL	AU, CERN, CN, ES, FR, HU, IT, RU, US
Muon	IT, RU
RTA	BR, CERN, CN, DE, ES, FR, IT, NL, PL, RU, UK, US
Online	CERN, FR

- Funding agency discussions underway
 - → UK already committed to funding their Upgrade II fair share

Collaboration expanding, and new members are welcome

Costs and US contribution

Detector	Baseline
	(kCHF)
VELO	14800
UT	8900
Magnet Stations	2300
MT-SciFi	22400
MT-CMOS	19500
RICH	15600
TORCH	9900
ECAL	34800
Muon	7100
RTA	17400
Online	8900
Infrastructure	13500
Total	175100

Preliminary estimates in FTDR (European accounting), primarily based on Upgrade I

- ~ US interest in ECAL and RTA in Upgrade II
 - → Also Magnet stations for LS3
- ~ Expected US contribution currently ~5% of project cost
- Interest from Brookhaven National Lab and other institutions to join Upgrade II effort
 - → Currently DOE/OHEP does not support LHCb
 - → Additional contributions proportional to increase of US membership
- ~ National lab infrastructure could be extremely beneficial for LHCb Upgrade II construction
 - → Installation in 2033-34, following completion of final ATLAS/CMS upgrade in 2026-28

Summary

- ~ LHCb had enormously successful Runs 1 and 2
 - → Key US contributions
- ~ Upgrade I installed → major project on budget
 - → Key US leadership
- ~ Clear case for Upgrade II to fully exploit HL-LHC
 - → Complementing ATLAS/CMS in the search for discoveries
- ~ Broad support and growing interest
 - → Additional support from DOE/OHEP would be very beneficial

Backup

Prospects for selected flavor observables week

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$R_K (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007	_
$R_{K^*} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [275]	0.031	0.032	0.008	_
R_{ϕ},R_{pK},R_{π}	_	0.08, 0.06, 0.18	_	0.02, 0.02, 0.05	_
CKM tests					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	_	1°	_
γ , all modes	$\binom{+5.0}{-5.8}$ ° [167]	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm S}^0$	0.04 [609]	0.011	0.005	0.003	
ϕ_s , with $B_s^0 \to J/\psi \phi$	49 mrad [44]	14 mrad		4 mrad	$22 \operatorname{mrad} [610]$
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	35 mrad	_	9 mrad	_
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad [94]	39 mrad	_	11 mrad	Under study [611]
$a_{ m sl}^s$	$33 \times 10^{-4} [211]$	10×10^{-4}		3×10^{-4}	_
$ V_{ub} / V_{cb} $	6% [201]	3%	1%	1%	_
$B_s^0, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	$90\% \ [264]$	34%	_	10%	$21\% \ [612]$
$ au_{B^0_s o\mu^+\mu^-}$	22% $[264]$	8%	_	2%	
$S_{\mu\mu}^{}$		_	_	0.2	_
$b \to c \ell^- \bar{\nu_l} { m LUV studies}$					
$\overline{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 [220]	0.071	_	0.02	_
Charm					
$\overline{\Delta A_{CP}(KK-\pi\pi)}$	$8.5 \times 10^{-4} [613]$	1.7×10^{-4}	5.4×10^{-4}	3.0×10^{-5}	_
$A_{\Gamma} \approx x \sin \phi$	$2.8 \times 10^{-4} [240]$	4.3×10^{-5}	3.5×10^{-4}	1.0×10^{-5}	_
$x\sin\phi \text{ from } D^0 \to K^+\pi^-$	$13 \times 10^{-4} [228]$	3.2×10^{-4}	4.6×10^{-4}	8.0×10^{-5}	_
$x \sin \phi$ from multibody decays		$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{\rm S}^0\pi\pi)\ 1.2\times 10^{-4}$	$(K3\pi) \ 8.0 \times 10^{-6}$	

LHCb Upgrade II will significantly exceed the precision of Belle II for the majority of observables of interest, not only for B decays to charged final states involving hadrons and dimuons, and charm physics, but also for decays involving electrons, single neutrals, and semi-leptonic modes

Physics case CERN-LHCC-2018-027

LHCb sweet spot for many flavor measurements

 $\mathcal{O}(10^9)$ $B^{0/+}$ mesons

Low uncertainty on absolute rates, 100% \(\epsilon\) (trigger), PID, low e-brem, knowledge of collision momentum

B-factories

Aiming to collect $\mathcal{O}(10^{10})$ $B^{0/+}$ mesons

 $\mathcal{O}(10^{11}) \ B_{(s)}^{0/+} \text{ mesons}$

Triggers primarily for flavor, PID, VELO, all b-hadron species

 $\mathcal{O}\left(10^{12}\right) \; B_{(s)}^{0/+} \; \mathrm{mesons}$ All b-hadron species

The LHCb experiment

- ~ GPD with focus on flavor physics
 - ⇒ 25% of $b\bar{b}$ production with 4% of solid angle (2 ≤ η ≤ 5)
 - → 100k b-hadrons produced every second

Excellent secondary vertex reconstruction

~ PID: π , K, p, μ

LHCb environment busier than B-factories

$$pp \to X_b B_s^0 X$$

$$B_s^0 \to \mu^+ \mu^-$$

LHC

pp collisions have background from $b\bar{b}$ hadronization, underlying event, and pileup

B-factories

Clean e^+e^- collisions only produce two B mesons (for the most part)

Vertexing and isolation key to LHCb

$$pp \to X_b B_s^0 X$$

$$B_s^0 \to \mu^+ \mu^-$$

- ~ B mesons can fly ~cm thanks to large boost
- Superb vertexing by VELO
 - → Only 8.2 mm from IP, reduced to5.1 mm in upgrade

- Multivariate algorithms ensure tracks isolated
 - → Based on track impact parameter, other variables

Baseline ECAL

Two technologies for different radiation requirements: Shashlik and SPACAL

> Scintillator-Pb sandwich with WLS fiber R/O

➤ WLS fiber bundle readout by PMT

> Single or double sided R/O possible

➤ Radiation tolerant up to 40-50 kGy

SPACAL (SPAghetti CALorimeter)

Radiation hard up to 1MGy

- > Scintillating fibers hosted in an absorber
- ➤ Light collected via lightguide, readout by PMT
- > Single or double sided R/O possible
 - ✓ Fibers:
 - > crystal
 - > organic
 - ✓ <u>Absorber</u>:
 - > tungsten
 - > lead

US LHCb UII Workshop 17 March 2023

Andreas Schopper

Baseline ECAL granularity

Radiation limit of current Shashlik technology (40 kGy)

Comparison of current and Upgrade II calorimeter layouts at $L = 1.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

- > occupancies manageable due to increased granularity and rhombic shape
- > few 10th of ps-timing allows for pile-up mitigation

Note: For consolidation during Long Shutdown 3 (LS3)

- > scintillating plastic-fibres & W-absorber
- > 2x2 cm² cell size

Keep current Shashlik technology for region <40 kGy:

- Take advantage of timing properties with improved new WLS fibers
- ➤ Long. segmentation (double-sided readout) for timing and reconstruction <u>Introduce new SPACAL</u> technology for region >40 kGy:
- 1 MGy region with scintillating crystal-fibres & W-absorber: SPACAL-W
 - ✓ Development of radiation-hard scintillating crystals
 - ✓ W-absorber for $1.5 \times 1.5 \text{ cm}^2$ cell size
- 40-200 kGy region with scintillating plastic-fibres & Pb-absorber: SPACAL-Pb
 - ✓ R&D on radiation-tolerant organic scintillators
 - ✓ Pb-absorber for 3x3 cm² cell size

US LHCb UII Workshop 17 March 2023

Andreas Schopper

DMAPs

Monolithic pixel detectors – Depleted MAPS

- Sensor and readout electronics on single wafer in standard High Resistivity/High Voltage-CMOS (HR/HV-CMOS)
 - Reduced material thickness (50 μm)
 - Small pixel size (50 μ m x 50 μ m)
 - In-pixel amplification
 - More cost effective (~£100k/m²)
 - Larger bias voltage (V_{bias})
 - Fast charge collection by drift (15 ns time resolution)
 - \circ Good radiation tolerance (10¹⁵ 1MeV n_{eq}/cm^2)
 - One limitation: The chip size is in principle limited to 2 cm x 2 cm, although stitching options are being investigated
- Next generation

- 7 November 2019 Warwick E. Vilella (Uni. Liver
 - E. Vilella (Uni. Liverpool) DMAPS seminar
- 13

- DMAPS in HR/HV-CMOS processes have huge potential for future particle physics experiments
 - Reduced material thickness (50 μm)
 - Small pixel size (50 μm x 50 μm)
 - More cost effective (~£100k/m²)
 - Fast charge collection by drift (15 ns time resolution)
 - Good radiation tolerance (10¹⁵ 1MeV n_{eq}/cm²)
- Quite a few experiments are interested in DMAPS
 - Mu3e (first application of DMAPS)
 - ATLAS ITk upgrade (cancelled)
 - LHCb Mighty Tracker upgrade
 - CLIC
 - CERN-RD50 (detector R&D)
- Several prototypes and "pre-production" detectors developed for these experiments
- Detector R&D to further develop its performance done within CERN-RD50

7 November 2019 – Warwick

E. Vilella (Uni. Liverpool) – DMAPS seminar

ΕO

$\phi_{s'}H \rightarrow c\bar{c}$

~ CP violating phase ϕ_s

- → Sensitive to new physics
 - ◆ Small and well predicted in SM
- → Upgrade II sensitivity below SM prediction in multiple channels
- Leverage world-leading VELO to set most stringent constraint on Higgs to charm
 - \rightarrow Currently set limit at $80y_{SM}^c$ at 8 TeV
 - → With 300 fb⁻¹ at 14 TeV \rightarrow 7 y_{SM}^c
 - ullet Improved VELO, electron performance, ML could push it to $2y_{SM}^c$

$B_c \to au u$

Very clean way to study possible NP hinted in $b \to c \tau \nu$ anomalies

Feasibility study fitting $m_{corr} \times BDT_1$, assuming $\mathscr{BF}\left(B^+ \to D^0\pi\pi\pi\right)$, worst-case scenario, $\varepsilon_{\rm rec} = 88\%$

ϵ_{rec}	$f_{B_c^+} \pm \sigma_{B_c^+}$	$f_{B^+} \pm \sigma_{B^+}$	$f_{B_c^+}/\sigma_{B_c^+}$	f_{B^+}/σ_{B^+}
84 %	$(4.72 \pm 1.40) \cdot 10^{-6}$	$(9.32 \pm 1.10) \cdot 10^{-5}$	3.3	8.4
88 %	$(9.38 \pm 1.66) \cdot 10^{-6}$	$(1.25 \pm 0.128) \cdot 10^{-4}$	5.6	9.6
92~%	$(1.20 \pm 0.207) \cdot 10^{-5}$	$(1.73 \pm 0.158) \cdot 10^{-4}$	5.7	10.8
96%	$(2.11 \pm 0.307) \cdot 10^{-5}$	$(3.91 \pm 0.228) \cdot 10^{-4}$	6.8	17.0
98~%	$(4.59 \pm 0.474) \cdot 10^{-5}$	$(7.20 \pm 0.328) \cdot 10^{-4}$	9.8	21.8
99~%	$(9.68 \pm 0.760) \cdot 10^{-5}$	$(1.46 \pm 0.0476) \cdot 10^{-3}$	12.7	30.4
99.5 %	$(2.23 \pm 0.128) \cdot 10^{-4}$	$(2.89 \pm 0.0715) \cdot 10^{-3}$	17.1	40.7

