Neutrino Physics and R&D at ANNIE

The Accelerator Neutrino Neutron Interaction Experiment

The ANNIE Detector

- Located in a powerful GeV-scale accelerator neutrino beam
 - Fermilab Booster Neutrino Beam (BNB): ~1 GeV v_{μ}
 - Shared beamline with the Short-Baseline Neutrino (SBN) Program LArTPCs (SBND, MicroBooNE, ICARUS-T600)

A flexible, Gd-loaded water Cherenkov detector

Magnetic focusing horn

- Water target loaded with Gadolinium
 - Excellent detection of neutrino-induced neutrons
 - Ability to deploy target sub-volumes (e.g. Waterbased LS, GdWbLS) and various calibration sources

 π

Date: 01/29/2020

electronics

~100 m

- Light detection using PMTs and next-generation LAPPDs
- Forward muon range detector for reconstructing highmomentum tracks, front veto to reject upstream activity

~600 m

😴 Fermilab

~500 m

MicroBooNE (Liquid Argon TPC

BNB

8 GeV p

(not to scale)

ANNIE (Water + Gd)

ANNIE in the broader program

- A suite of targeted neutrino-nucleus interaction measurements
 - Neutrino-induced neutron production
 - Characterizing backgrounds for future DSNB and proton decay searches
 - Leveraging BNB experiments for precision multi-target cross section measurements (argon/water)
 - Key cross section ratios and correlated hadron production constraints
 - Snowmass LoI: Physics Opportunities at ANNIE

A flexible R&D testbed for future large detectors

- Gd loading: 1st Gd-H₂O target in a neutrino beam
- LAPPDs: First neutrinos on LAPPDs (2022)
 - Multiple LAPPDs deployed now, more coming
- WbLS: Water-based LS sub-volume deployed now
 - Future plans for a full WbLS fill, opportunity to prototype e.g. Theia beam (LBL) physics
- Snowmass LoI: ANNIE Detector R&D

Role of small-scale experiments

- Small-scale experiments offer clear benefits to the particle physics community
 - Targeted measurements (physics and R&D) inform the larger programs
 - Flexibility to address evolving needs
- Projects provide an ideal training ground for early career scientists
 - Experience all facets of experimental physics
 - Broad expertise for executing physics projects, skills the technical workforce
- Realizing these benefits requires robust and predictable funding in the coming years
 - Such projects have a high impact-to-cost ratio
 - Strong support enables creative, high-impact science and excellent training opportunities

