

The PROSPECT reactor antineutrino Experiment: Highlights and future opportunities

Diego Venegas Vargas

The University of Tennessee Knoxville

On behalf of the PROSPECT collaboration

March 23rd – P5 Town Hall at Fermilab and Argonne, 2023

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Physics Division

PROSPECT is a successful outcome of the last Snowmass / P5 cycle

Recommendation 4: Maintain a program of projects of all scales, from the largest international projects to mid- and small-scale projects.

Recommendation 6: In addition to reaping timely science from projects, the research program should provide the flexibility to support new ideas and developments.

Recommendation 15: Select and perform in the short term a set of small-scale short-baseline experiments that can conclusively address experimental hints of physics beyond the three-neutrino paradigm. Some of these experiments should use liquid argon to advance the technology and build the international community for LBNF at Fermilab.

PROSPECT Detector

Antineutrino Detection:

- PROSPECT detects antineutrinos via the Inverse Beta Decay (IBD) interaction
- Time-position correlation between prompt and delayed signal
- 14x11 array of 6LiLS (~4ton)
- Baseline: 6.7-9.2 m

Experiment Site:

High Flux Isotope Reactor (HFIR)

- 93% 235U Fuel
- 85 MW thermal power
- Compact core
- Huge flux in the few MeV range
- ~50% duty cycle for BG measurements

Results and plans from PROSPECT-I

2011 RAA paper & SNAC workshop, **First Spectrum Result** 2012 white paper motivated search for eV-scale sterile neutrinos, Phys. Rev. Lett. 122, 251801 (2019) **2018** first physics limits from PROSPECT Non-fuel reactor neutrinos Phys. Rev. C 101, 054605 (2021) Improved Osc. + Spectrum Phys. Rev. D 103, 032001 (2021) **Boosted Dark Matter Search** Phys. Rev. D 104, 012009 (2021) Daya Bay/PROSPECT Joint Spectrum Analysis Phys. Rev. Lett. 128, 081801 (2022) **PROSPECT/STEREO Joint Spectrum Analysis** Phy. Rev. Lett 128, 081802 (2022) New **Final PROSPECT-I Spectrum Analysis** arxiv:2212.10669 **Techniques** PROSPECT has served as a Performed direct test of the Reactor Antineutrino Anomaly. 'Final' PROSPECT-I Oscillation fantastic professional RAA best-fit excluded: 98.5% CL development and training Data is compatible with null oscillation hypothesis (p=0.57) Absolute Flux Analysis program for young scientists. Helped establish new constraints on the origin of the data-model 10 Ph.D. Theses **Correlated Background Study** disagreement observed between 5-7 MeV 2 M.S. Theses **Multiple Postdocs Antineutrino Directionality** Likely due to an equal mismodeling of all fissile isotopes and undergraduates as well Led joint analyses with other experiments STEREO and Daya Bay

First Oscillation Search

Phys. Rev. Lett. 121, 251802 (2018)

Next Phase of PROSPECT

High ~ 4:1 signal:background ratio
Planned ~2 year deployment at HFIR, ORNL
~50% reactor on-time

Retains successful elements of PROSPECT-I

- 14x11 optically segmented ⁶Li-doped liquid scintillator with minimal shielding
- Located 7-9m from HEU core of HFIR (+ possible LEU site)

Moves PMTs out of liquid scintillator volume to avoid contact with other materials

Increases signal collection capacity with 20% longer segments, 20% increased ⁶Li loading, longer data-taking period -> 10x effective statistics at HFIR

External calibration system instead of calibration tubes inside active volume, simplifies design

Designated to deploy at multiple sites

Physics opportunities:

- New HEU spectrum measurement with uncertainties at the level of model predictions
- Possible HEU/LEU measurement would mitigate the effect of systematic uncertainties
- Exclusion of the remaining Gallium Anomaly, RAA sterile neutrino oscillation phase space below ~10eV²
- Test the claim made by Neutrino-4 at high Δm²
- Address ambiguities in long-baseline physics

