Tera-Z with FCC-ee : a $b/c/\tau$ physics factory for our future J.Hirschauer & S.Eno

- Tera-Z program will produce 2×10^{12} Z bosons per IP
 - $L \sim 180 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \text{ on Z resonance}$
 - 87 ab⁻¹ per year per IP
- $Z \rightarrow bb/cc/\tau\tau$: unprecedented laboratory for flavor physics
 - b quark ID feasible with lifetime measurements for bs with $E \sim m_Z/2$
 - All flavors of b mesons and baryons can be produced
- Natural extension of inspiring physics programs at LHCb + Belle II:
 - Realize new measurements not feasible at LHCb + Belle and
 - Confront most interesting results with 10× more events and next generation detectors

Particle production (10^9)	$B^0 \ / \ \overline{B}^0$	B^+ / B^-	$B^0_s \ / \ \overline{B}^0_s$	$\Lambda_b \; / \; \overline{\Lambda}_b$	$c\overline{c}$	τ^-/τ^+
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	300	300	80	80	600	150

• **Combine best attributes** of LHCb and Belle:

Attribute	$\Upsilon(4S)$	pp	Z^0
All hadron species		1	1
High boost		1	1
Enormous production cross-section		1	
Negligible trigger losses	~		1
Low backgrounds	~		1
Initial energy constraint	1		(•

Some examples of b/c/T physics reach at Tera-Z

Rare (semi-)leptonic b-hadron decays are powerful probes of potential flavor dynamics beyond the SM

Tera-Z + next generation detectors = unique sensitivity to rare decays with 3rd generation fermion couplings

More examples of $b/c/\tau$ physics reach at Tera-Z

Clean environment, state-of-the-art detectors, and immense datasets allow precise studies with tau leptons

Many more examples in FCC Snowmass Summary : <u>https://arxiv.org/pdf/2203.06520.pdf</u>

