Advanced Accelerator Concepts (AAC) for Future Colliders

AAC technologies R&D

Overarching goal: efficiently harness the interaction of charged particles with extremely high EM fields to reach ultra high acceleration gradients (GeV/m)

High gradient → **Compact linear colliders**

Towards a 10 TeV lepton collider

- AAC is a promising option for a multi-TeV lepton collider
 - Extending the energy reach of linear colliders
 - Compact enough for a US site
 - Potential reduction in power consumption & environmental impact
- Rapid progress recently with great scientific visibility
 - High gradient and high power structures
 - Advanced electron sources for bright beam production
 - Bunch shaping for efficiency improvement
 - Multi-GeV acceleration in a single stage
 - Staging, and many more
- Significant development still required for 10 TeV lepton colliders
 - AAC challenges to address: high repetition rate, high wall-plug efficiency, beam emittance preservation over stages, e^+ acc. ...
 - Continued and enhanced R&D, upgrades to US Test Facilities

SWFA 1-15 TeV CME

AAC for workforce of future colliders

- AAC has been building a strong workforce for future colliders
 - Students are being drawn into the field
 - Recent data point: at AAC'22 Workshop, 96 students (37%) out of 258 registrants
 - Unique training opportunities to learn about "the best of both worlds"
- Foster and deepen collaboration between national labs and universities
 - Capitalizing on premier US Beam Test Facilities

Welcome to the Argonne Wakefield Accelerator (AWA)

US center for SWFA research