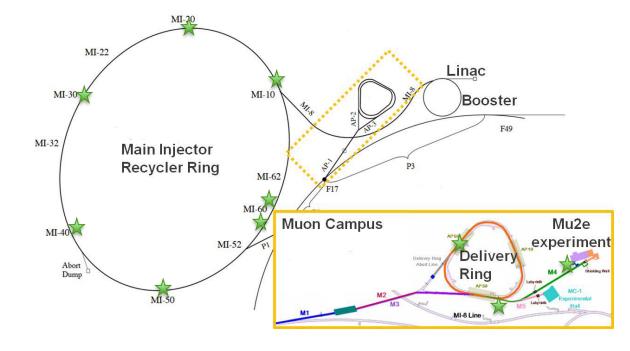


FPGA-Based Architectures & DAQ Pathways for Distributed ML Systems

- M.A. Ibrahim , J.R. Berlioz
- EPICS Collaboration Meeting in April 2023
- April 26- 28, 2023

In partnership with:

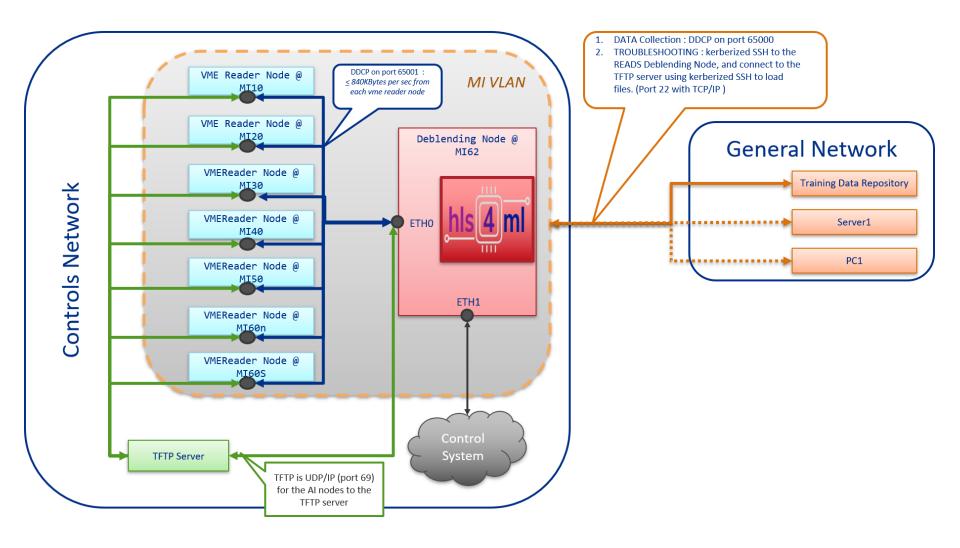
Overview of AL/ML Activitites/ Projects

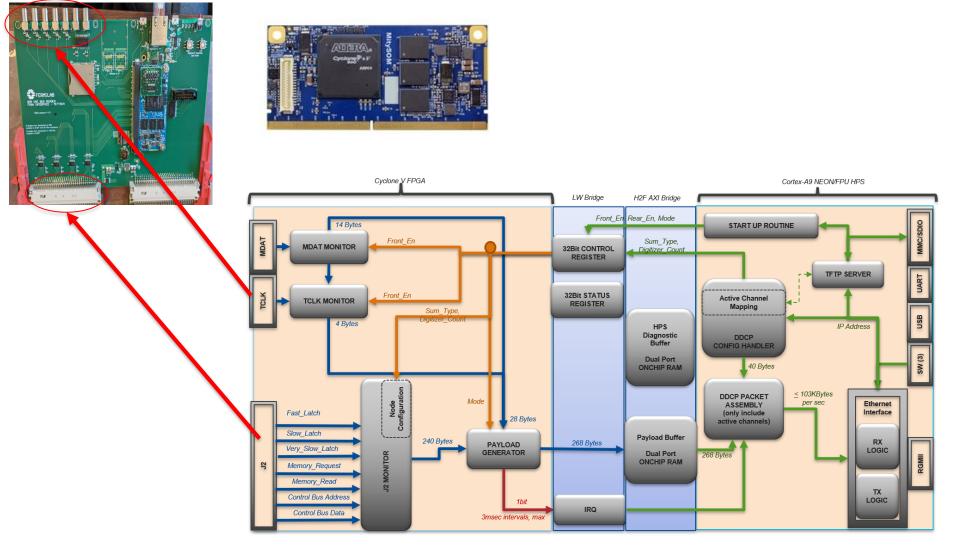

https://indico.cern.ch/event/1133593/

- Machine learning for Linac RF Optimization Longitudinal optimization
- Booster Gradient Magnet Power Supply Control
- "Big Data" Booster Control
- Orbit Alignment at PIP2IT Using Bayesian Optimization
- □ AI/ ML for NuMI Target System Monitoring
- □ Real-time quench detection
- FAST/IOTA RF gun stabilization and optimization
- □ Loss minimization vs MI or RR situation
- Stabilization of 8 GeV slow extraction from Muon-C ring
- □ 6D Cooling optics design with ML elements

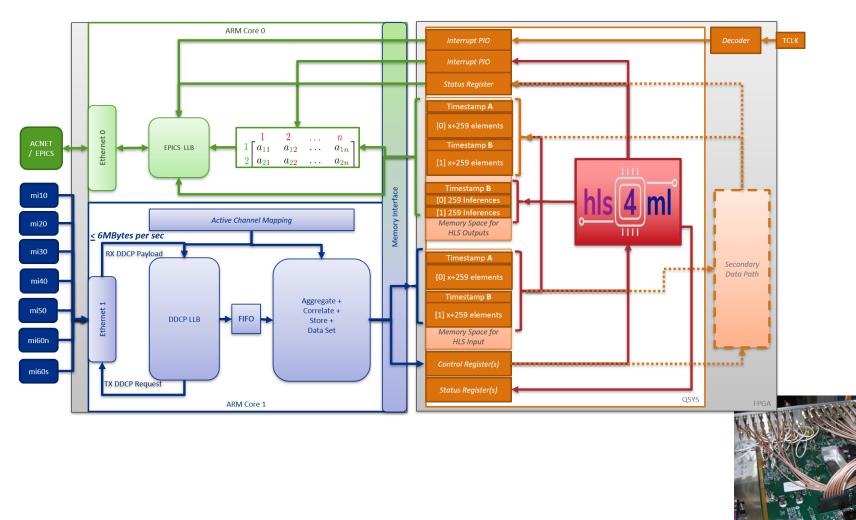
🚰 Fermilab

Beam Loss Monitors (BLMs)




Real-Time Edge AI for Distributed System (READS) Network

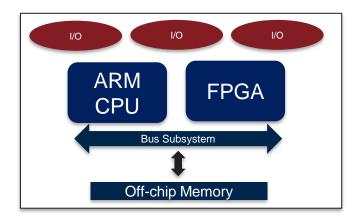
🛟 Fermilab



READS Distributed VME Reader Nodes

‡ Fermilab

READS Central Deblending Node

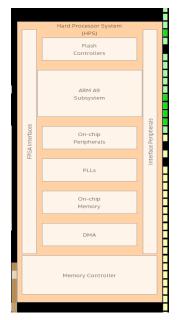

M.A. Ibrahim, J.R. Berlioz | EPICS Collaboration in April 2023

‡ Fermilab

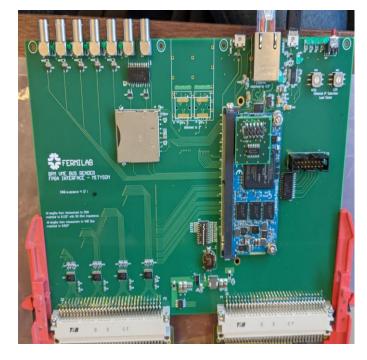
SoC (System on Chip)

It combines a

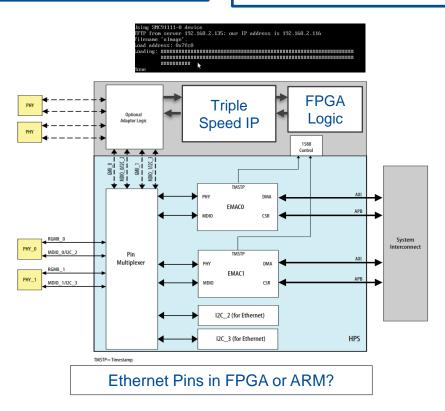
- Dual-core ARM Cortex-A9 processor
- Field-Programmable Gate Array (FPGA) fabric on a single chip.



SoM (System on Module)



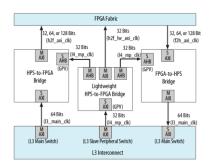
Data Transmission Considerations



Through ARM:

- Rapid prototyping
- More flexibility
- C, C++, Rust, etc.
- TCP/IP Stack readily available
- Longer Latency.
- Load images over the network and SSH.

Through FPGA:

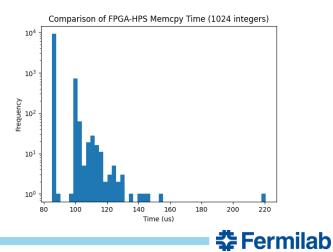

- Needs place and route
- Less flexibility
- VHDL/Verilog
- No IP Stack
- Shorter Latency (Hardware Response).
- Loading image through JTAG is possible.

FPGA/HPS Data Bridges

🖃 💶 hps	Hard Processor System Intel Arria 10 FPGA IP
f2h_cold_reset_req	Reset Input
f2h_warm_reset_req	Reset Input
 emif 	Conduit
hps_io	Conduit
h2f_reset	Reset Output
 h2f_axi_clock 	Clock Input
h2f_axi_reset	Reset Input
 h2f_axi_master 	AXI Master
h2f_lw_axi_clock	Clock Input
h2f_lw_axi_reset	Reset Input
 h2f_lw_axi_master 	AXI Master
f2h_axi_clock	Clock Input
f2h_axi_reset	Reset Input
f2h_axi_slave	AXI Slave
f2h_irq0	Interrupt Receiver
f2h_irq1	Interrupt Receiver

Table 2-2: Common Address Space Regions

Region Name	Base Address	Size		
FPGA slaves	0xC000000	960 MB		
Peripheral	0xFC000000	64 MB		
Lightweight FPGA slaves	0xFF200000	2 MB		


Source: Cyclone V Technical Manual

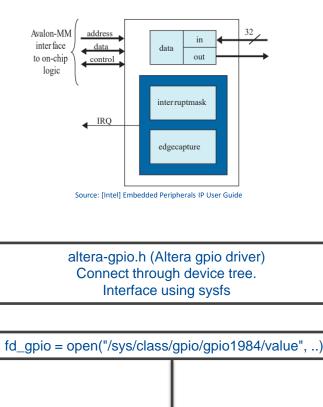
Exercise: Read 4 KB (1024 32-bit integers) of data through the h2f AXI bridge and calculate the time it takes to read the data.

HPS program can access HPS onchip memory using memcpy. 10,000 readouts were obtained.

- **1. MIN**: 85.02 us
- **2. MEDIAN**: 85.061 us (~45.8MB/s)
- **3. MAX**: 220.772 us

Compare to period of FPGA with 100Mhz Clock (10 ns) Writing one integer in each clock cycle would be 10ns*1024 = 10.24us.

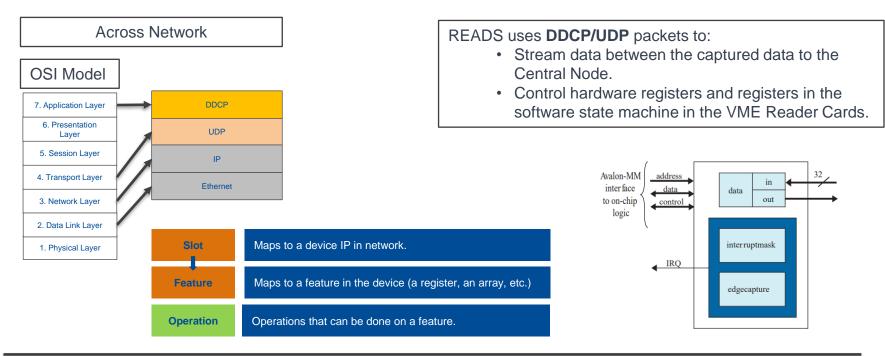
FPGA Notifications (through PIOs)

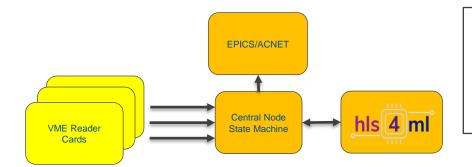

Table 2-2: Common Address Space Regions

Region Name	Base Address	Size		
FPGA slaves	0xC000000	960 MB		
Peripheral	0xFC000000	64 MB		
Lightweight FPGA slaves	0xFF200000	2 MB		

Source: Cyclone V Technical Manual

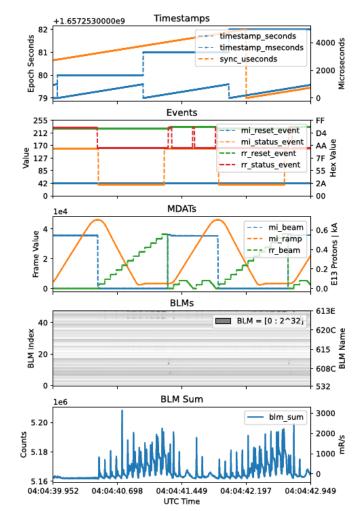
Register Map for the PIO Core									
Offset	Register Name		R/W	(n-1)		2	1	0	
0 data	data	read access	R	Data val	Data value currently on PIO inputs				
	write access	W	New val	New value to drive on PIO outputs					
1	direction (1)		R/W	port. A v	Individual direction control for each I/O port. A value of 0 sets the direction to input; 1 sets the direction to output.				
2	interrupt mask <u>(1)</u>		R/W	Setting a	IRQ enable/disable for each input port. Setting a bit to 1 enables interrupts for the corresponding port.				
3	edge capture (<u>1)</u>		R/W	Edge de	detection for each input port.				
4	outset		W		es which bit of the output port to se bhysical register				
5	outclear		W		pecifies which output bit to clear. ot a physical register.				




Polling API

READS Communications

To EPICS/ACNET


The State Machine in the central node manages the incoming DDCP stream and presents it to the HLS model.

The output of the HLS4ML model is presented with the original inputs timestamped to an EPICS API that loads it into ACNET.

READS Publications

- Accelerator Real-time Edge AI for Distributed Systems (READS) Proposal (March 2020) https://arxiv.org/abs/2103.03928
- Real-Time Edge AI for Distributed Systems (READS): Progress on Beam Loss De-Blending for the Fermilab Main Injector and Recycler (August 2021) <u>https://jacow.org/ipac2021/papers/mopab288.pdf</u>
- Optimizing Mu2e Spill Regulation System Algorithms (August 2021) <u>https://jacow.org/ipac2021/papers/THPAB243.pdf</u>
- Synchronous High-Frequency Distributed Readout for Edge Processing at the Fermilab Main Injector and Recycler (August 2022) <u>https://napac2022.vrws.de/papers/mopa15.pdf</u>
- Semantic Regression for Disentangling Beam Losses in the Fermilab Main Injector and Recycler (August 2022) <u>https://napac2022.vrws.de/papers/mopa28.pdf</u>
- Machine Learning for Slow Spill Regulation in the Fermilab Delivery Ring for Mu2e (August 2022) <u>https://napac2022.vrws.de/papers/mopa75.pdf</u>

