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• A flat name space restricts seriously:
• Clients need to know all channel names beforehand,

• Portable generic clients must be simple,

• Apps need full configuration or framework supplied service,

• Develop a Directory Service
• Generic

• No dependency on installation and local conventions;

• Simple and fast (enough)
• Use standards wherever possible;

• Provides "query-by-functionality".



"name" : "SR:C02-MG:G04A{HFCor:FM1}Fld-I",

"owner" : "train",

"properties": [

"handle":"Setpoint",

"elemType":"HFCOR",

"devName":"FM1G4C02A",

"iocName":"motorsim",

"time":"2016-03-21"

]

"tags": ["x", "sys.SR"]

Channel Definition Example



Example Data Set
Device FM1G4C02A

Channel Name

SR:C02-MG:G04A{HFCor:FM1} SR:C02-MG:G04A{VFCor:FM1}

Fld-I Fld-SP Fld-I Fld-SP

handle READBACK SETPOINT READBACK SETPOINT

elemName FXM1G4C02A FYM1G4C02A

elemType HFCOR VFCOR

elemField x y

devName FM1G4C02A

sEnd 65.5222

cell C02

girder G4

symmetry A

length 0.44

ordinal 263 264

tags

eget eput eget eput

x y

sys.SR



Query for PV’s

SR:C02*&elemType=HFCOR*&handle=setpoint&~tag=sys.SR

• All PVs from with names starting with SR:C02 

• Represent the setpoint of the horizontal corrector

• Part of the storage ring



Usage from high level physics

Example*
corrector = Corrector(deviceName=`FM1G4C02A`)
>> channels = cf.find(deviceName=‘FM1G4CO2A’)

xPos, yPos = corrector.getPositions()
>> xPosPv = cf.find([(deviceName,‘FM1G4CO2A’), (elemField, ‘x’)])

>> yPosPv = cf.find([(deviceName,‘FM1G4CO2A’), (elemField, ‘y’)])

>> caget(xPosPv ) and caget(yPosPv )

corrector.setPositions(xPos=1.23, yPos=3.21)
>> caput(‘SR:C02-MG:G04A{HFCor:FM1} Fld-SP’, 1.23) 

>> caput(‘SR:C02-MG:G04A{VFCor:FM1} Fld-SP’, 3.21)



ChannelFinder Applications and Use Cases

•Channel Tree
Create hierarchical
views of EPICS PVs

• The phoebus autocomplete service 
queries channelfinder to populate 
the autocomplete list for PV Names
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Alarm 

Server

Managing ChannelFinder data

recSync

•How to populate new channels
• Without having to learn the client 

api’s

•How to manage existing channels
• Orphaned channels

• Moved channels
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Managing ChannelFinder data

recSync

• The record synchronizer 

• A client (RecCaster) which running as part of an 
EPICS IOC (EPICS support module)

• A server (RecCeiver) which is a stand alone 
daemon. 

• Ensure ChannelFinder have a complete list of all 
records currently provided by the client IOCs.

• Recsync Information
• The EPICS Base Version
• A predefined set of environment variables
• The name and type of all records
• Any info() tags associated with these records
• A set of user defined environment variables

• https://github.com/ChannelFinder/recsync
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CFNameServer
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Populating ChannelFinder with Connection data

CFNameServer

https://github.com/epics-base/epics-base/pull/269

• EPICS 7.0.7 the TCP port used by 
RSRV was exposed as an 
environment variable

RSRV_SERVER_PORT

• RecCaster provides both 
host IP & RSRV port

• RecCeiver populates ChannelFinder
with the PV name and properties 
containing the IP and port info
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Populating ChannelFinder with Connection data

CFNameServer

Example data populated by the receiver in ChannelFinder

{
"name": "tst:counter",
"properties": [

{
"name": "socket_address",

"value": "130.199.219.181:5078"
}

]
}
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Name Resolution using ChannelFinder data

CFNameServer

• A PVAccess Nameserver using 
ChannelFinder service

• Upon receipt of a name resolution 
request, CFNameServer queries the 
ChannelFinder service for information 
about the host IP and port associated 
with the PV

GET http://ChannelFinder/../channels/tst:cnt

• Using the "socket_address" property 
value, CFNameserver responds to the 
PV name resolution requests with 
information about the IOC IP port
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Client to CFNameServer

CFNameServer
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• core-pva
• pvxs

Client using the above libraries can 
be configure via an environment 
variable to use the CFNameServer

EPICS_PVA_NAME_SERVERS=CFNameServer.nsls2.bnl.gov:5076

pvget/pvmonitor/pvput tst:cnt

https://github.com/ControlSystemStudio/phoebus/tree/master/core/pva
https://mdavidsaver.github.io/pvxs/overview.html


Channel Processors



• Whenever a new Channel is created or an existing Channel is 
modified, CFProcessors allow sites to configure a set of 
actions to be performed

Examples:

• Parsing the PV name to populate additional properties like device 
name

• Configure other middle layer services like adding new PV to the 
archiver

ChannelProcessors



public interface ChannelProcessor

{    

void process(List<XmlChannel> channels);
}

• A processor can be added to ChannelFinder by implementing the 
"ChannelProcessor" interface

• Implementation of the processor are discovered and loaded using the 
Service Provider Interface (SPI)

• Each instance of ChannelFinder can be configured with 0-n different 
processors

• The processors are run asynchronously on a dedicated thread pool

Implementing a ChannelProcessor



• AAChannelProcessor
• The AA processor, checks if the newly created channel includes a 

property called archive, if present it uses the value of this property 
and adds this channel to the archiver appliance to begin archiving.

Using ChannelProcessors
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Using ChannelProcessors

AAChannelProcessor

The IOC developer adds an info tag 
to records they wish to be added to 
the Archiver

example.db

record(longin, "tst:counter") {
field(VAL, "0")
…
info("archive","MONITOR@0.1")

}
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Using ChannelProcessors

AAChannelProcessor

The RecCeiver converts the archive
info tag into a property

GET http://Channelfinder/.../tst:counter

{
"name": "tst:counter",
"properties": [

{
"name": "archive",
"value": " MONITOR@0.1 "

}
]

}
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RecCeiver
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Using ChannelProcessors

AAChannelProcessor

AAChannelProcessor

public interface AAChannelProcessor

{    

void process(List<XmlChannel> channels) {

#check if the channels have *archive* property

# make a http request to the 

http://archiver.bnl.gov/mgmt/bpl/archivePV?
pv=tst:counter&
samplingperiod=.1&
samplingmethod=MONITOR

} 
}

CFNameServer

clients
java

python

Phoebus

aphla

ChannelFinder Clients CFNameserver Clients

Phoebus

C
lie

n
ts

RecCaster

RecCaster

S
e

rv
e

r
IO
C
’s

ChannelFinder

REST API

Archiver 

Appliance



• Releases 
• Version 1.x & 2.x Ironing out the REST API

• Version 3.x Migration to elastic scalability and performance

• Version 4.x Simplify build and deployment with switch to springboot, 
code cleanup, extensible and pluggable architecture

• Next Releases
• Standardize some of the common properties like archive & 

socket_address
• Improvements to RecCeiver
• Stress tests and scalability tests for CFNameserver
• New Phoebus applications and tools

Timeline


