
Channel Finder
A Directory Service

Kunal Shroff, Kay Kasemir, Tynan Ford, Michael Davidsaver, Georg Weiss, Ralph
Lange and many other

• A flat name space restricts seriously:
• Clients need to know all channel names beforehand,

• Portable generic clients must be simple,

• Apps need full configuration or framework supplied service,

• Develop a Directory Service
• Generic

• No dependency on installation and local conventions;

• Simple and fast (enough)
• Use standards wherever possible;

• Provides "query-by-functionality".

"name" : "SR:C02-MG:G04A{HFCor:FM1}Fld-I",

"owner" : "train",

"properties": [

"handle":"Setpoint",

"elemType":"HFCOR",

"devName":"FM1G4C02A",

"iocName":"motorsim",

"time":"2016-03-21"

]

"tags": ["x", "sys.SR"]

Channel Definition Example

Example Data Set
Device FM1G4C02A

Channel Name

SR:C02-MG:G04A{HFCor:FM1} SR:C02-MG:G04A{VFCor:FM1}

Fld-I Fld-SP Fld-I Fld-SP

handle READBACK SETPOINT READBACK SETPOINT

elemName FXM1G4C02A FYM1G4C02A

elemType HFCOR VFCOR

elemField x y

devName FM1G4C02A

sEnd 65.5222

cell C02

girder G4

symmetry A

length 0.44

ordinal 263 264

tags

eget eput eget eput

x y

sys.SR

Query for PV’s

SR:C02*&elemType=HFCOR*&handle=setpoint&~tag=sys.SR

• All PVs from with names starting with SR:C02

• Represent the setpoint of the horizontal corrector

• Part of the storage ring

Usage from high level physics

Example*
corrector = Corrector(deviceName=`FM1G4C02A`)
>> channels = cf.find(deviceName=‘FM1G4CO2A’)

xPos, yPos = corrector.getPositions()
>> xPosPv = cf.find([(deviceName,‘FM1G4CO2A’), (elemField, ‘x’)])

>> yPosPv = cf.find([(deviceName,‘FM1G4CO2A’), (elemField, ‘y’)])

>> caget(xPosPv) and caget(yPosPv)

corrector.setPositions(xPos=1.23, yPos=3.21)
>> caput(‘SR:C02-MG:G04A{HFCor:FM1} Fld-SP’, 1.23)

>> caput(‘SR:C02-MG:G04A{VFCor:FM1} Fld-SP’, 3.21)

ChannelFinder Applications and Use Cases

•Channel Tree
Create hierarchical
views of EPICS PVs

• The phoebus autocomplete service
queries channelfinder to populate
the autocomplete list for PV Names

Populating
Channel Finder
with

Rescyn

Alarm

Server

Managing ChannelFinder data

recSync

•How to populate new channels
• Without having to learn the client

api’s

•How to manage existing channels
• Orphaned channels

• Moved channels

RecCaster

ChannelFinder

RecCeiver

REST API

RecCaster

CFNameServer

clients
java

python

Phoebus

aphla

ChannelFinder Clients CFNameserver Clients

Phoebus
Archiver

Appliance

C
lie

n
ts

S
e

rv
e

r
IO
C
’s

Alarm

Server

Managing ChannelFinder data

recSync

• The record synchronizer

• A client (RecCaster) which running as part of an
EPICS IOC (EPICS support module)

• A server (RecCeiver) which is a stand alone
daemon.

• Ensure ChannelFinder have a complete list of all
records currently provided by the client IOCs.

• Recsync Information
• The EPICS Base Version
• A predefined set of environment variables
• The name and type of all records
• Any info() tags associated with these records
• A set of user defined environment variables

• https://github.com/ChannelFinder/recsync

CFNameServer

clients
java

python

Phoebus

aphla

ChannelFinder Clients CFNameserver Clients

Phoebus
Archiver

Appliance

C
lie

n
ts

RecCaster

ChannelFinder

RecCeiver

REST API

RecCaster

S
e

rv
e

r
IO
C
’s

CFNameServer

Alarm

Server

Populating ChannelFinder with Connection data

CFNameServer

https://github.com/epics-base/epics-base/pull/269

• EPICS 7.0.7 the TCP port used by
RSRV was exposed as an
environment variable

RSRV_SERVER_PORT

• RecCaster provides both
host IP & RSRV port

• RecCeiver populates ChannelFinder
with the PV name and properties
containing the IP and port info

CFNameServer

clients
java

python

Phoebus

aphla

ChannelFinder Clients CFNameserver Clients

Phoebus
Archiver

Appliance

C
lie

n
ts

RecCaster

ChannelFinder

RecCeiver

REST API

RecCaster

S
e

rv
e

r
IO
C
’s

https://github.com/epics-base/epics-base/pull/269

Alarm

Server

Populating ChannelFinder with Connection data

CFNameServer

Example data populated by the receiver in ChannelFinder

{
"name": "tst:counter",
"properties": [

{
"name": "socket_address",

"value": "130.199.219.181:5078"
}

]
}

CFNameServer

clients
java

python

Phoebus

aphla

ChannelFinder Clients CFNameserver Clients

Phoebus
Archiver

Appliance

C
lie

n
ts

RecCaster

ChannelFinder

RecCeiver

REST API

RecCaster

S
e

rv
e

r
IO
C
’s

S
e

rv
e

r

RecCaster

ChannelFinder

RecCeiver

REST API

RecCaster

IO
C
’s

Name Resolution using ChannelFinder data

CFNameServer

• A PVAccess Nameserver using
ChannelFinder service

• Upon receipt of a name resolution
request, CFNameServer queries the
ChannelFinder service for information
about the host IP and port associated
with the PV

GET http://ChannelFinder/../channels/tst:cnt

• Using the "socket_address" property
value, CFNameserver responds to the
PV name resolution requests with
information about the IOC IP port

clients
java

python

Phoebus

aphla

ChannelFinder Clients

CFNameServer

Alarm

Server

CFNameserver Clients

Phoebus
Archiver

Appliance

C
lie

n
ts

S
e

rv
e

r

RecCaster

ChannelFinder

RecCeiver

REST API

RecCaster

IO
C
’s

Client to CFNameServer

CFNameServer

clients
java

python

Phoebus

aphla

ChannelFinder Clients

CFNameServer

Alarm

Server

CFNameserver Clients

Phoebus
Archiver

Appliance

C
lie

n
ts

• core-pva
• pvxs

Client using the above libraries can
be configure via an environment
variable to use the CFNameServer

EPICS_PVA_NAME_SERVERS=CFNameServer.nsls2.bnl.gov:5076

pvget/pvmonitor/pvput tst:cnt

https://github.com/ControlSystemStudio/phoebus/tree/master/core/pva
https://mdavidsaver.github.io/pvxs/overview.html

Channel Processors

• Whenever a new Channel is created or an existing Channel is
modified, CFProcessors allow sites to configure a set of
actions to be performed

Examples:

• Parsing the PV name to populate additional properties like device
name

• Configure other middle layer services like adding new PV to the
archiver

ChannelProcessors

public interface ChannelProcessor

{

void process(List<XmlChannel> channels);
}

• A processor can be added to ChannelFinder by implementing the
"ChannelProcessor" interface

• Implementation of the processor are discovered and loaded using the
Service Provider Interface (SPI)

• Each instance of ChannelFinder can be configured with 0-n different
processors

• The processors are run asynchronously on a dedicated thread pool

Implementing a ChannelProcessor

• AAChannelProcessor
• The AA processor, checks if the newly created channel includes a

property called archive, if present it uses the value of this property
and adds this channel to the archiver appliance to begin archiving.

Using ChannelProcessors

Alarm

Server

Using ChannelProcessors

AAChannelProcessor

The IOC developer adds an info tag
to records they wish to be added to
the Archiver

example.db

record(longin, "tst:counter") {
field(VAL, "0")
…
info("archive","MONITOR@0.1")

}

CFNameServer

clients
java

python

Phoebus

aphla

ChannelFinder Clients CFNameserver Clients

Phoebus
Archiver

Appliance

C
lie

n
ts

ChannelFinder

REST API

S
e

rv
e

r

RecCaster

RecCeiver

RecCaster

IO
C
’s

Alarm

Server

Using ChannelProcessors

AAChannelProcessor

The RecCeiver converts the archive
info tag into a property

GET http://Channelfinder/.../tst:counter

{
"name": "tst:counter",
"properties": [

{
"name": "archive",
"value": " MONITOR@0.1 "

}
]

}

CFNameServer

clients
java

python

Phoebus

aphla

ChannelFinder Clients CFNameserver Clients

Phoebus
Archiver

Appliance

C
lie

n
ts

RecCaster

RecCaster

S
e

rv
e

r
IO
C
’s

ChannelFinder

RecCeiver

REST API

RecCeiver

Alarm

Server

Using ChannelProcessors

AAChannelProcessor

AAChannelProcessor

public interface AAChannelProcessor

{

void process(List<XmlChannel> channels) {

#check if the channels have *archive* property

make a http request to the

http://archiver.bnl.gov/mgmt/bpl/archivePV?
pv=tst:counter&
samplingperiod=.1&
samplingmethod=MONITOR

}
}

CFNameServer

clients
java

python

Phoebus

aphla

ChannelFinder Clients CFNameserver Clients

Phoebus

C
lie

n
ts

RecCaster

RecCaster

S
e

rv
e

r
IO
C
’s

ChannelFinder

REST API

Archiver

Appliance

• Releases
• Version 1.x & 2.x Ironing out the REST API

• Version 3.x Migration to elastic scalability and performance

• Version 4.x Simplify build and deployment with switch to springboot,
code cleanup, extensible and pluggable architecture

• Next Releases
• Standardize some of the common properties like archive &

socket_address
• Improvements to RecCeiver
• Stress tests and scalability tests for CFNameserver
• New Phoebus applications and tools

Timeline

