SLAC Initiatives on # **Accelerator Cyber Security** Greg White, Prepared for EPICS Collaboration Meeting Spring 2023 April 26, 2023 Greg White, for Erwin Lopez, Mark McCullough, Amedeo Perazzo, Ken Brobeck, Mark Foster, Daron Chabot, Mike Zelazny, Lance Nakata, Matt Gibbs, Andrea Chan, Arash Alavi, Poonam Pandi, Lisa Christiansen, Uy Chu, Syed Hasan Many Thanks to David Manz (PNNL), Jozsef Gacsal (SecurityLit), Jason Carter (ORNL), Ralph Lange (ITER), Bob Dalesio, Michael Davidsaver (Osprey DCS), George McIntyre (Level-N Ltd) #### **Contents** - 1. Accelerator computing - 2. Example Cyber Statistics, Regulations, and Thinking - 3. Typical Cyber Computer Architecture for Accelerators - 4. Conducting a Cyber Security Review - 5. Extant Accelerator Control System Cyber Issue, EPICS - 6. Improving EPICS cyber security - 7. New Cyber Regulatory Framework, Compliance Challenge, and Future - 8. Summary ## **Accelerator Computing** - User facing computers. Unix/Linux, Windows, Apple OS, etc. - Control System Software Framework commonly EPICS DOE labs - Fast network, typically Ethernet (10 Gb/s), some proprietary - Front End computing (Input Output Controllers IOCs) - Field Buses (VME, CAMAC) - FPGA, PLC, programmed logic. - Display managers (User interface to process variable values) - High level support software; Matlab, Python, C/C++ - Beam diagnostics, analysis, and beam optimization (High Level) Applications (HLAs) - Beam Modelling and simulation, High Performance Computing - Machine Learning (multi-parametric analysis and heuristic reasoning) Many users, some only peripherally associated with the laboratory. Many kinds of computers, many kinds of network, many tools. Some developed in the community without security oversight, some brought in from outside. ## Challenges in Accelerator Computing, Implications for Cyber Security - 1. Accelerator data and detector data sizes and rates -> Data centers - Machine Learning, large-scale optimization -> HPC and Data Center is in production - 3. Continuous, online multi-particle modeling -> HPC in production - 4. More software for more sophisticated machines -> Vulnerability scanning in prod - 5. Machine security. New boundaries in beam power and intensity. *Accidental damage* - Cyber Security of large US national assets. Malevolent Damage. | | LCLS-II Baseline | | | LCLS-II-HE | | | | |-----------|------------------|-----------------------|-------------------|------------|-----------------------|-------------|--| | Dump Unit | Emax [GeV] | P _{max} [kW] | < P > [kW] | Emax [GeV] | P _{max} [kW] | <p>[kW]</p> | | | DUMPBSY | 4.5 | 250 | 90.0 | 8.0 | 250 | 45.2 | | | DUMP2BSY | 1 | | - | 4.0 | 125 | 39.8 | | | DUMP | 4.5 | 120 | 47.8 | 8.0 | 240 | 56.5 | | | DUMPB | 4.5 | 120 | 27.0 | 8.0 | 120 | 56.5 | | # **Cyber Threat Statistics and Context** | SLAC CYBER EVENT DATA | Q4 2022 | Q2 2023 | |---|------------|----------------------------| | Perimeter defenses stopped attempts. Scanning for known vulnerabilities. Like ssh user brute force attack, Apache path traversal, ZeroShell command execution, etc. Or actual exploits. Like Remote Code Execution (RCE), SQL injection, etc. | 33,149,555 | 509,750,086
(yes 509 M) | | Endpoint protection events stopped: Crowdstrike. Malicious software detected. Successfully mitigated by Endpoint protection and response | 130 | 490 | | Control system intrusions known | 0 | 0 | | Front-end intrusions known | 0 | 0 | #### Context and thinking - Historically, accelerator control systems have not included strong cyber security within the network - We have relied on "secure-perimeter" (sometimes called sequestered network, or "walled garden") - The world is a different place - Is secure-perimeter still advisable? Cf Executive Order (EO) 14028, Improving the Nation's Cybersecurity and Zero Trust Architecture (ZTA) and DOE SC orders - Is EPICS secure? See later in talk. ### Contents - 1. Accelerator computing - 2. Example Cyber Statistics, Regulations, and Thinking - 3. Typical Cyber Computer Architecture for Accelerators - 4. Conducting a Cyber Security Review - 5. Extant Accelerator Control System Cyber Issue, EPICS - 6. Improving EPICS cyber security - 7. New Cyber Regulatory Framework, Compliance Challenge, and Future - 8. Summary # Distributed Control System + EPICS Cyber Schematic Figure: Simplest Schematic of an Accelerator Control System Network. Computers users, for instance in the control room, connect over a fast network (Gb/s) to front end computers. Those computers in turn connect by field buses and cabling to accelerator hardware for particle generation, beam condition and guidance (electro-magnets), acceleration (RF), diagnostics (beam position), human and machine protection systems, vacuum, cooling etc. ## Typical Accelerator Computing Architecture (LCLS complex at SLAC) Big Data stores Experiment Data Analysis Accelerator Physics Analysis Multi-particle Tracking (s-2-e) Machine Learning Training Non-critical Data Services Simulation Software development Control room displays High Level Apps execution Online modeling Critical Data Services Optimization, ML and slow feedback Accelerator devices - 1000s. Producing control and diagnostics signals (Process Variables) - > 8 million at LCLS ## Typical Accelerator Computing Architecture (LCLS complex at SLAC) Accelerator devices - 1000s. Producing control and diagnostics signals (Process Variables) - > 8 million at LCLS # EPICS Authorization. Access Control File (ACF) ``` [physics@lcls-srv01 .../epics/iocCommon/facility]$ more access security cryo.acf UAG(CRYO) { dianek, smcqueen, rredford, vivienl, eidle, kdouglas, gclooney, cryoegr } UAG(SYSMAN) { sysman } HAG(CRYOMCR) { cryo-opi01, cryo-opi02, cryo-opi03, cryo-opi04, cryo-opi05 } HAG(ACR) { opi10, opi11, opi12, opi13, opi14, opi15, opi16, opi17, opi20, opi21, opi22, opi23, opi24, opi25, opi26, opi30, opi31, op i32, opi33, opi34, opi35, opi40, opi41, opi42, opi43, opi44, opi45, opi46, opi47 } ASG(CRYO) { INPA(ZIOC:CP00:CR01:CRYO ACCESS) # Subsystem-specific permissions bit RULE (1, READ) RULE(1, WRITE) { UAG(SYSMAN) } # Global permissions ("CRYO only") RULE(1, WRITE, TRAPWRITE) { HAG (CRYOMCR) # Subsystem Specialist access RULE(1, WRITE, TRAPWRITE) { Example: Access Control File for LCLS Cryogenic Systems, CALC ("A=1") UAG (CRYO) HAG (SRV) ``` showing individual **user names**, **computer names**, that the cryo control room can write a cryo PV at any time, and that cryo specialists can write to a cryo PV only if they have been enabled to do so by operations. # Experience of SLAC Accelerator Cyber Assessment 1. Scope and Objective System Experts charged with assessment of resilience to cyber attack on: - 1. Operations (for instance deletion of required software) - 2. Physical accelerator controls (e.g. malicious write to PVs of cryo facility) - 3. Accelerator configuration basis (e.g. magnet polynomials in Oracle) - 4. Data, analysis or diagnostics (e.g. deletion or change of archived values). PPS cyber security was not investigated. We did NOT consider physical security such as vacuum of cryomodule, cavity tune, etc. Results used to plan immediate improvements and further analysis. Experts directed to highlight items that worried them. And to use the systems analysis to investigate and propose fixes. #### Experience of SLAC Accelerator Cyber Assessment cont'd ### 2. Systems in Scope - 1. SLAC IT Network; routers, gateways, Domain Name Services. - Control System Access mechanism: Enterprise (SLAC) Identity Access Management -> DMZ bastion -> ssh public key - 3. Accelerator Control System Hosts - 4. Control System Software security - a. PV write authorization security (EPICS Channel Access "ACLs" for PVs) - b. Control Protocol security (EPICS Channel Access, PvAccess) - **C.** Front end computer security (EPICS IOC software, FPGA, field busses etc) - d. Beam diagnostics, tuning and optimization security (Matlab, Python) - 5. Data Stores: EPICS Archiver, High Performance timeseries data stores - 6. Intellectual Property Stores: Physics Log, Operations Log - 7. Databases: Oracle (Device Infrastructure, Magnet, Cabling, Issue management, etc) - 8. High Performance Computing Systems - Controlled Document store (Sharepoint) - 10. Engineering Drawings (Windchill, Solid Edge, AutoCAD, SODA) #### Experience of SLAC Accelerator Cyber Assessment cont'd ## 3. Systems Specialists Briefing & Response Template #### For each system assignment: - Describe the use of the system in brief - Describe existing security measures, assess any weaknesses, and highlight missing coverage - Tabulate the system with respect to the following. For each defense type, if the system includes it, describe the defense's implementation in the system. If the defense is not pertinent to the system, enter "N/A". If the defense would be pertinent to the system, but is not in fact employed, enter "Not implemented" and, if possible, details of what you would recommend. | Security or Cyber Defense Type | Describe | |--|---| | Authentication, Authorization, Audit. Kerberos, SSL public/private key | How is a user authenticated to the system. Is Authentication for instance by Kerberos? How are communications encrypted (if at all) | | Known Vulnerability scanning | Is the system scanned for known ways to hack? | | Backups | Verify backups exist and are being updated. Document the backup schedule and where backups are located. Are backups secure against system failure, power, fire. | | Malware Detection | Is the system included in Crowdstrike? | | Accelerator self-defense – EPICS LO/HI limits, MPS, BCS | For accelerator controls, what mechanisms exist to ensure proper operating range? | | Air-gapped processor-observer pattern (as in PPS) | Does any part of the system include air-gapped or one-way only communications (data diode) security? | | Network segmentation | Is the system hosted in a controlled or otherwise confined network? | # Findings of SLAC Accelerator Cyber Review | System | Authentication
Authorization
and Audit | Vulnerability
Scanning | Malware Det.
(Crowdstrike) | Backups | Accelerator
Protection
system | Air-gap / process-
observer | Network
Segmentation | |---|---|--|--|--|--|--|---| | MCC.
Accelerator
Controls
Networks -
~OSI 7 Layer
Model levels 1-5 | ssh rsa/dsa
public-private key
using SLAC User
ID and mcdogin
as a bastion host.
VMS password. | No vulnerability
scanning on
accelerator
networks, for fear
of interference
with ops.
Yes, at DIVIZ level. | No malware
scanning on
accelerator
networks, for fear
of interference
with ops.
Yes, at DMZ level. | Yes. All NFS data
and systems are
backed up by
coordination with
OCIO.
Operational to
MCC (bldg. 5).
Disaster recovery
to ANR (B52).
Large data to AFS. | N/A | No. Direct
authenticated
login is supported. | Yes. Filtering Router enforces DIVIZ intermediates SLAC to prod. Each accelerator network is segmented into a few functional VLANs. | | EPICS. Accelerator Controls Networks ~ OSI 7 Layer Model levels 6-7 | No control
network user
Authentication.
EPICS PV change
Authorization
being added. | No. IOC processes
and dient servers
are not scanned
for vulnerabilities. | No. No malware
detection of EPICS
processes on
Production . No
front end
executable
certification | Access Control
Files backed up by
virtue of AFS. | Yes, extensive but
may be
incomplete.
Facilitated by
EPICS DRV-L/H,
MPS, BCS. | Not as such, but
separation
mediated by
router is
sometimes used. | Yes. Production
networks are
isolated via DMZ. | | SLAC Science
Data Facility
(aka S3DF) | Kerberos (until
SLAC standard
federated is
available) | Yes. S3DF DMZ
daily. Others
biannual. | Yes - DMZ &
Workstations. No
- HPC and core. | Yes (as of Aug 22). | N/A | Not employed.
S3DF is intended
for access
internally and
externally. | Yes. | | SLAC Enterprise
Networks (SLAC
IT) | Networking
device
management
requires
authentication by
Kerberos + DOE
PIV card. | Yes, admin. by
SLAC cyber. | Yes. Networking
management
hosts have
CrowdStrike.
Devices (routers
etc) do not. | Yes.
Backups daily to
SLAC AFS and
Stanford AFS. | N/A | No.
SLACIT does not
operate any air-
gapped
enterprise
networking | Yes. SLAC
Networks are
segmented;
access and
firewall
implemented
individually for
each. | | Orade & APEX. | UserID + Oracle
db pwd or Oracle
wallet. LDAP &
WebAuth for
APEX. | Yes, admin. by
SLAC cyber. | Yes on main
SLACPROD dbs.
No on MCCO
dbs. | Yes. Full and
incremental
backups daily. 30
day retention. | N/A | No. | DBs segmented
by content. Diff.
pwd/wallet
required for each.
MCCO is in DMZ. | | Controlled
Document
Management
System (CDMS) | SLAC Active
Directory & MFA.
MS has no access
to SLAC cloud
data. | Yes, admin. by
MS. | Yes, administered by MS. | Yes, redundancy
and resiliency by
MS. We assume
their diligence | Content describes
Accelerator
Protection
Systems. | No. | Yes [2] | | Engineering
Drawings and
Data (TC / SEDA) | TC req SLAC ID of
named license
holder. SEDA req
SLAC ID/ MFA | Yes, admin. by
SLAC cyber. | Yes, admin by
SLAC cyber. | TC: Yes, admin by
SLAC IT. SEDA:
Yes, admin by
MS. | N/A | No. | Per TC system. | | High Level
Applications
(HLA) | Presently, all HLAs
are on prod, so
AAA is per MCC
and EPICS above. | No, not in production. | No, not in production. | Yes, per MCC. | Partly. Mostly rely
on EPICS limits. | No. However do
have read-only
gateway. | Yes, per MCC. | Figure: Example table of cyber review findings, showing each of 8 system's cyber situation on 7 metrics SLAC SLAC Summary: Positive Overall. Our cyber security was found complete with respect to common practice. - 1. Login security is comparable to most facilities. Will soon be leading - 2. Backups are complete - 3. Malware Detection & Vulnerability Detection are complete (subject to the norm that malware detection is not run in production) - 4. CA Security (authorization to change PV) is designed, in cryo IOCS, and ready for broad implementation All EPICS Labs However, EPICS itself is insecure. Its use is based on aging assumption of secure perimeter. Lacks strong authentication and software signing. ### Contents - 1. Accelerator computing - 2. Example Cyber Statistics, Regulations, and Thinking - 3. Typical Cyber Computer Architecture for Accelerators - 4. Conducting a Cyber Security Review - 5. Extant Accelerator Control System Cyber Issue, EPICS - 6. Improving EPICS cyber security - 7. New Cyber Regulatory Framework, Compliance Challenge, and Future - 8. Summary # EPICS Controls Security Issues & Recommendations #### Passive Traffic Inspection Passive attacker can observe and learn Process Variable and server names. Not considered serious. ⇒ Could Mitigate by TCP+TLS(*) - PV Denial of Service by search spam - Active attacker responds to PV search requests, directing to null server - PV Search Hijacking / Man in the Middle Attack - Active attacker responds quickly to all observed searches, redirect clients to rogue EPICS server. Returns fake data, or proxy forwards bad control data to a legitimate control system EPICS server. Very bad things. - ⇒ Mitigate by adding Transport Layer Security (as long as attacker does not hold certificate) - Server impersonation / credential theft Theft of server certificate used to maliciously impersonate PVs provided a legitimate server. ⇒ Mitigate by something like certificate "pinning." ^(*) Transport Layer Security (TLS); Encryption, certificate-based authentication, compression. ## **EPICS Security Improvement:** #### PvAccess and Transport Layer Security (TLS) - PvAccess + TLS = First step to Zero Trust Architecture in EPICS Accelerator controls - Multi phase project: - Server side authentication - Client side - Certificate server? Name Server? Pinning? - Transition phase: EPICS pvAaccess TLS would be fully backward compatible. TLS aware endpoints co-exist with non TLS. - Goal: All endpoints use PvAccess + TLS. NOTE security implies removal of legacy Channel Access protocol from EPICS systems (!) Figure: EPICS PVA negotiation with TLS proposal, showing: TLS handshake after message validation, "tls" message, cipher handshake, and certificate verification additions to EPICS PvAccess protocol. Modification uses the "magic" byte in the pvAccess header, and existing protocols field in the search response. ### **Contents** - 1. Accelerator computing - 2. Example Cyber Statistics, Regulations, and Thinking - 3. Typical Cyber Computer Architecture for Accelerators - 4. Conducting a Cyber Security Review - 5. Extant Accelerator Control System Cyber Issue, EPICS - 6. Improving EPICS cyber security - 7. New Cyber Regulatory Framework, Compliance Challenge, and Future - 8. Summary ## Cyber Security Regulatory Framework - Executive Order (EO) 14028, Improving the Nation's Cybersecurity. Calls for a "Zero Trust" posture - —OMB Memorandum M-22-09, Moving the U.S. Government Toward Zero Trust Cybersecurity Principles - DOE Plan to Implement Zero Trust Architecture (ZTA), July 11, 2021 - DOE Improving Cybersecurity: Guide to Implement Zero Trust Architecture, DOE OCIO, March 2022 - DOE Moving the U.S. Government Toward Zero Trust Cybersecurity Principles Zero Trust Strategy Document. M-22-09, Gina Fisk, DOE-SC CISO, July 2022 # DOE Zero Trust Order Compliance Gap Analysis Zero Trust Architecture order [2] Principle; authenticate individuals for each action they take; and make authentication so ubiquitous that the secure perimeter can and should be dismantled. | DOE Zero Trust Guidance (from [6]) | Norms in Accelerator Distributed Controls network | |---|---| | Assume no implicit trust is granted to users, or resources. | A lot of implicit trust granted to accelerator users | | Foundational tenet no resource is inherently trusted | Resources frequently trusted. No way to verify identity nor true operation of resource. EPICS+TLS would enable resource certification. | | and must be continuously authenticated | Rarely re-authenticate. Could add. Implies work disruption | | Encrypt data-at-rest and data-in-transit | Control data-in-transit not encrypted. EPICS+TLS would enable encryption. Data-at-rest (stored, archived) not encrypted. Could add, though won't be popular. | | Multi-factor authentication | MFA rare inside controls. Possible to add MFA to ssh. Must consider MFA for operations. | | Malware Detection everywhere | Uncommon for malware detection in high performance, high availability control systems. Rare for malware in front end computing. | #### Contents - 1. Accelerator computing - 2. Example Cyber Statistics, Regulations, and Thinking - 3. Typical Cyber Computer Architecture for Accelerators - 4. Conducting a Cyber Security Review - 5. Extant Accelerator Control System Cyber Issue, EPICS - 6. Improving EPICS cyber security - 7. New Cyber Regulatory Framework, Compliance Challenge, and Future - 8. Summary # Plan for SLAC Accelerator Cyber Security #### Pursue: - Complete Channel Access Security - Individual Logins. Negotiate on OPI logins. Think through implication of common id on OPIs for EPICS attacks - Deploy ACL files - Penetration Test. Multi-phase outside SLAC to SLAC, from inside SLAC to control, stealth, non-stealth etc. - EPICS PVA+TLS - Server side first, then client - CA will have to be removed. - SSH with MFA - MAC registration - Malware detection (CrowdStrike) in Accelerator Network assessment - Vulnerability detection in Accelerator Network assessment - Collaboration and Partnership with EPICS community. #### Negotiate / seek exemption from Office of Science on ZTA: - Encryption at rest. Cf Stanford Research Policy Handbook (RPH), section 1.4, Openness in Research - Re-authentication. Too disruptive to operations. ## Penetration Test Experience #### Method: - Safety Critical Systems addresses removed - Other production included (while machine was down) - Developers on dev networks (!) working on kinetic or high voltage systems need formal warning - Formal table of addresses whose pen test is controlled. Other addresses included #### Pen Test Conclusions: - Pretty good. - For future pen testing "canary traps" for port scans in important networks - Developer safety (!). May have to control pen tests as a safety matter! Like LOTO. - Critical systems (PPS, BCS etc) ## Summary - 1. Accelerator Computing involves many interconnected systems - 2. Distributed control often relies on a sequestered network architecture and assumption of security within the network - 3. The world is different, and we must adapt - 4. Recent EO, OMB and DOE regulations require serious thought about assumptions - 5. True Accelerator Cyber Security will be a long hard challenge - We've started on the road with EPICS PvAccess + TLS - Many challenges remain, particularly legacy systems ubiquity. - 6. External Consultancy for penetration testing accelerator - 7. Is port scanning a safety hazard that must be safety controlled (PJB, LOTO etc)? - 8. DOE can help with clarification, funding and materially supporting collaboration toward a nominal architecture for controls and experimental systems cyber security. ## References - Cybersecurity Capability Maturity Model (C2M2), June 2019, DOE, https://apps.dtic.mil/sti/pdfs/AD1078768.pdf - 2. Executive Order (EO) 14028, Improving the Nation's Cybersecurity, <a href="https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/Calls for a "Zero Trust" posture - 3. OMB Memorandum M-22-09, Moving the U.S. Government Toward Zero Trust Cybersecurity Principles, https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf - 4. DOE Plan to Implement Zero Trust Architecture (ZTA), July 11, 2021 - 5. DOE Improving Cybersecurity: Guide to Implement Zero Trust Architecture, DOE OCIO, March 2022 - 6. DOE Moving the U.S. Government Toward Zero Trust Cybersecurity Principles Zero Trust Strategy Document, Gina Fisk, DOE-SC CISO, July 2022 ## **BACKUPS** ## SLAC ACCELERATOR CYBER REVIEW FINDINGS #### Positive Overall. Our cyber security is complete with respect to common practice. - 1. Login security is comparable to most facilities. Will soon be leading - 2. Backups are complete - 3. Malware Detection (Crowdstrike) & Vulnerability Detection are complete (subject to acceptance of the common principle that the control system be exempt from these). - 4. CA Security (authorization to change PV) is designed, in cryo IOCS, and ready for broad implementation #### However, EPICS is insecure. Its use is based on aging assumption of secure perimeter. - EPICS protocols lack strong authentication - a. Man in the Middle attack. A PV could be changed without ACR knowledge - b. EPICS users will be authorized for PV changes, but aren't presently strongly authenticated - 2. IOC Software is not certificate authenticated (user can't be sure the IOC they're talking to is not an imposter) #### Additionally, some administration and management: - 1. PV drive limits are not all set can lead to machine errors - 2. Understaffed with Oracle DB Admin # Argonne (APS) Controls Computing Example