

Problem

Generate timestamped timestamped data (Mbps) timing timing data (Mbps) **FPGA** data data **FPGA** timestamped timing data (Mbps) **FPGA** data aggregated stream (Gpbs) timestamped timestamped data (Mbps) timing data (Mbps) timing data **FPGA FPGA** data timestamped timing data (Mbps) data **FPGA** timestamped data (Mbps) timing data **FPGA**

Store

Large storage that we think we own (let's call it "the cloud"); in this case we kinda do, though...

Retrieval

User

human after working for 14 hours and hitting the "retrieve" button the same number of hours

User

human mistakenly trying to retrieve 100G samples, instead of 100k

User

unaware human using the lab's infrastructure to download a 8GB movie and being shutdown by IT (no retrieval for you; so let's just worry about the other users)

User

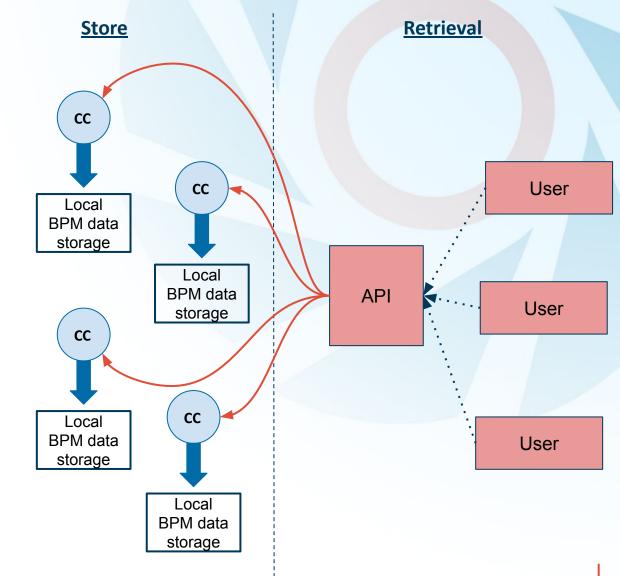
friendly, tech-savvy human, not-sleep deprived, starting to use the system and asking for just 16 samples (power of 2, because who knows?)

Concrete Use Case

ALS-U Storage Ring Sector (1 of 12)

MRF: Events / Timing Data (fiber fanouts) Fast Orbit Feedback Network (Dual 3.125 Gb/s fiber links) **Ethernet - EPICS Channel Access** Cell Cell 1 Gb/s . . . Ethernet Controller Controller fiber links • 10-20kHz rate • 16 bytes per BPM PS₁ • 18 BPMs per sector Cell Controller: BPM1 • 12 sectors BPM aggregator PS2 BPM2 FOFB calculation • Power-Supply setpoints PS3 **BPM Network** BPM3 Dual 3.125 Gb/s PS4 • BPM: 1.5 - 3 Mbps BPM4 fiber links • CC: 25 - 50 Mbps PS5 • Total: 300 - 600 Mbps BPM5 PSn **BPMn** Fast Feedback Beam Position **Power Supplies**

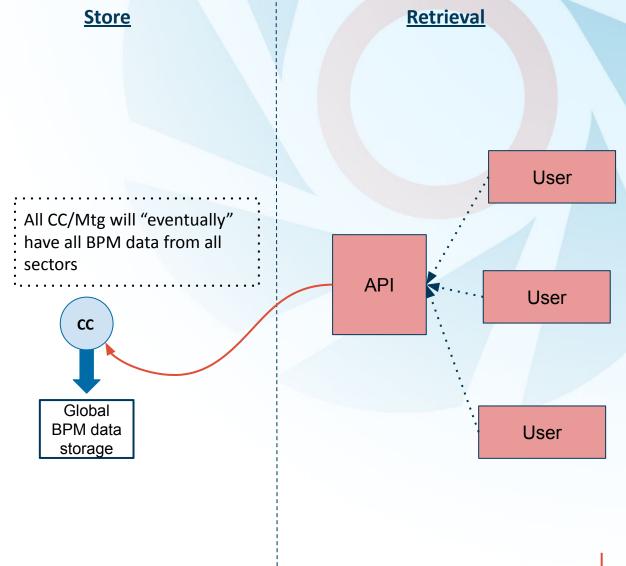
Monitors



Option #1: local/distributed storage

timestamped data (Mbps) timestamped data (Mbps) CC Control System CC CC timestamped data (Mbps) CC CC **ALS-U Storage Ring** Fast MPS Permit Mitigation **RF Drive** Node CC timestamped CC data (Mbps) CC CC CC Credit: Jonah Weber

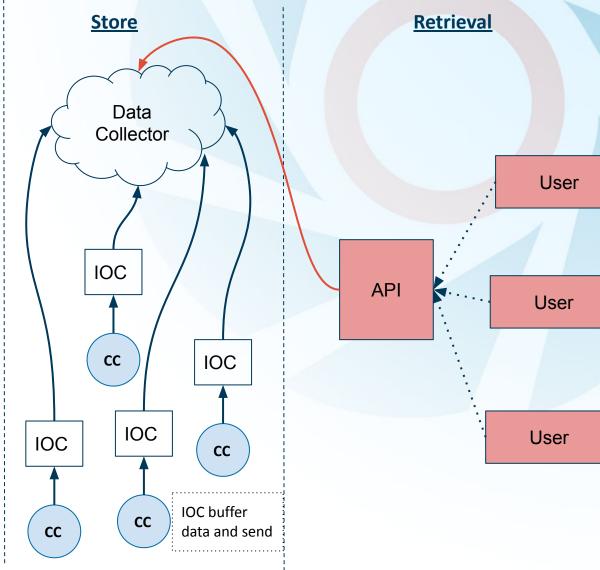
Generate



Option #2: local/single storage

timestamped data (Mbps) timestamped data (Mbps) CC Control System CC CC timestamped data (Mbps) CC CC **ALS-U Storage Ring** Fast MPS Permit Mitigation RF Drive Node CC CC timestamped data (Mbps) CC CC CC

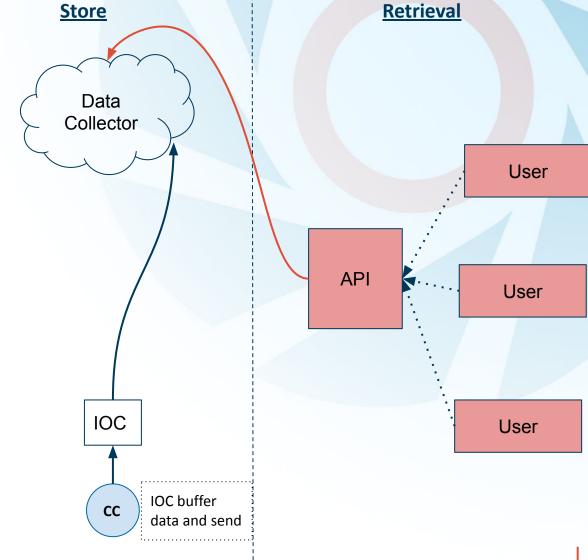
Generate



Credit: Jonah Weber

Option #3: Multiple CC IOC (pva) generating

Generate timestamped data (Mbps) timestamped data (Mbps) CC Control System CC CC timestamped data (Mbps) CC **ALS-U Storage Ring** Fast MPS Permit Mitigation **RF Drive** Node CC timestamped CC data (Mbps) CC CC CC Credit: Jonah Weber



Option #4: Single CC IOC (pva) generating

Generate timestamped data (Mbps) timestamped data (Mbps) CC Control System CC CC timestamped data (Mbps) CC **ALS-U Storage Ring** Fast MPS Permit Mitigation **RF Drive** Node CC timestamped CC data (Mbps) CC CC CC Credit: Jonah Weber

Conclusion

- Any labs doing something like that?
- Any "standard" (EPICS 7, preferred) way of doing that?
 - Streaming EPICS data could enable us to leverage EPICS tools to consume/process data on-the-fly
- Should I try to use something from the community first, before writing my own?
- Anyone or somewhere where I can reach out to discuss this?

