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Many tuning problems at LCLS/LCLS-Il and FACET-II at
SLAC require detailed phase space customization for
different experiments

Cathode and RF gun
RF accelerating cavities
Focusing magnets

m E Linearizing cavity Chicane (beam compression) Undulator (e- beam to photons)
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Injector Main Accelerator Sections

Beam exists in 6-D position-momentum phase space

Have incomplete information: measure 2-D projections or reconstruct
based on perturbations of upstream controls (e.g. tomography, quad scans)

Have dozens-to-hundreds of controllable variables and hundreds-of-
thousands (up to millions for LCLS-1l) to monitor

Nonlinear, high-dimensional optimization problem
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wide spectrum of tuning needs
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Tuning approaches leverage different amounts of data / previous knowledge
- suitable under different circumstances

less — assumed knowledge of machine —— > more
4 N\ N\ N
Model-Free Model-guided Global Modeling +
Optimization Optimization Feed-forward Corrections

" / ||l AN

J. Kirschner

Observe performance change after a
setting adjustment Update a model at each step Make fast system model

= provide initial guess (i.e. warm
start) for settings or fast compensation

- estimate direction or apply

o . - use model to help select the next
heuristics toward improvement

point
\ J \. J \ J
gradient descent Bayesian optimization ML system models +
simplex reinforcement learning inverse models

ES

Tuning research at SLAC is aimed at combining the strengths of different approaches.

General strategy for our research: start with sample-efficient methods that do well on new systems, then build up to more
data-intensive and heavily model-informed approaches.
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FEL pulse energy tuning at LCLS Loss rate tuning at SPEAR3 Sextupole tuning for IP at FACET-II
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Roussel et. al. PRAB . 2021 Algorithms being implemented/distributed in Xopt: https://github.com/ChristopherMayes/Xopt @t



https://github.com/ChristopherMayes/Xopt

Efficient Emittance Optimization with Partial Measurements

Instead of tuning on costly emittance measurements directly: learn a fast-executing model online for
beam size while optimizing - learn on direct observables (e.g. beam size); do inferred “measurements” (e.g. emittance)
* New algorithmic paradigm leveraging ‘“Bayesian Algorithm Execution’” (BAX) for 20x speedup in tuning

(a)
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Paradigm shift in how tuning on indirectly computed beam measurements (such as emittance) is done, with 20x improvement over

standard method for emittance tuning. > Now working to integrate into operations.
- Also now working to incorporate more informative global models /priors rather than learning the model from scratch each time.



https://arxiv.org/abs/2209.04587

Neural Network System Models + Bayesian Optimization

Combining more expressive models with BO = important for scaling up to higher-dimensional
tuning problems (more variables)

Good first step from previous work: use neural network aw
system model to provide a prior mean for a GP
prior mean
Gk Sy=tem Summer '22 undergrad intern
Used the LCLS injector surrogate model for prototyping Connie Xu
variables: solenoid, 2 corrector quads, 6 matching quads '\d—/
. . ) . . ata
objective: minimize emittance and matching parameter
Correlations Between
Predictions and Ground Truth Mean and Standard Error of Best -Emittance*bmag per Iteration (50 Trials)
Correlations between Model2 and Surrogate (Ground Truth) (10k samples) g - _0 6
Correlation = 1 o 0 : e
3 —
g T -0.8
. : -
& r -1.0
5: E £
Lz o -10 E .
;& B 12 prior mean from
2 © . . .
=5 = ~ E_-14 models with different fidelity
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(1]
Q £ —— Model2 2-16
v -20 ; ‘LS —— Constant (Default)
A e S e b 0.460 0.465 0.470 0.475 0.480 0.485 ¢ -1.8 : — Ground Truth
200 175 150 125 oo 75 e ks oo SOL1:solenoid field scale (kG*m) 5 regu'la'j Ba?'es"’” Modell
Model 2 Erca optimization —— Model2
0 10 20 30 40 50
q o ol a q o iteration
Even prior mean models with substantial inaccuracies provide a Beta = 2.0

boost in initial convergence
—> now testing on machine and refining approach

NeurlPS proceeding: https://arxiv.org/abs/2211.09028



Efficient

Characterization with o (x) = o(x) npl(gl(x) h) W(x, %)

Bayesian Exploration

adaptive sampling

Equal lengthscales Short lengthscale
—l

Initial samples Exploration samples -

Enables sample-efficient
characterization of high-dimensional

spaces, while respecting both input and
output constraints
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R. Roussel et. al.
Nat. Comm. 2021
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Efficient Characterization of FACET-Il Injector

O\ Setting changes on 10 variables (solenoid, bucking coil, corrector quads and matching quads)

v
X-y emit,
—— match,
and
beam

images

Automatic Exploration
(constrained to useful values
of emittance and match)

A

Solenoid + Quadrupoles

Faraday Cup

adrupoles

LOoa

Quadrupoles

Jo|

Quadrupoles
LOb

|
-

A 4

[ Comprehensive ML ] FACET-I Injector

Models of Injector

. . . . . . . transverse phase space
* Used Bayesian Exploration for efficient high-dimensional characterization (10 p P

variables) of emittance and match at 700pC: 2 hrs for 10 variables compared
to 5 hrs for 4 variables with N-D parameter scan

B %

¢ Data was used to train neural network model of injector response predicting x-
y beam images. GP ML model from exploration predicts emittance and match.

* Example of integrated cycle between characterization, modeling, and
optimization - now want to extend to larger system sections and new setups

Predicted Measured

Use of Bayesian exploration to generate training data was sample-efficient, reduced burden of data cleaning, and resulted in a well-

balanced distribution for the training data set over the input space. ML models were immediately useful for optimization.



Fast-Executing, Accurate System Models

Accelerator simulations that include nonlinear and
collective effects are powerful tools, but they can
be computationally expensive

ML models are able to provide fast approximations to simulations
(“surrogate models”)

Neural Network

Simulation Measurement gun LIX ;

_ L3-linac

L2-linac

BC1 , BC2

250MeV “-“43GeV  14GeV

undulator
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L3 Voltage 50 110 100 percent
J. Qiang, et al, PRSTAB30, < ms execution speed
054402, 2017
10 hours on : .
thousands of 107 times speedup
cores at NERSC! Edelen et al, NeurlPS 2019

ML modeling enables accurate predictions of system responses with unprecedented speeds, opening up new avenues for high-fidelity

online prediction, tracking of machine behavior, and model-based control



https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf

Fast-Executing, Accurate System Models

ML models are able to provide fast approximations to simulations
(“surrogate models”)

Bringing simulation
tools from HPC gun LIX .
systems to
online/local
compute

Neural Network

L2-linac

_ L3-linac

BC2

IZSO MeV 43 GeV 14 GeV undulator
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Scan of 6 settings in simulation fs {relative)
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Control prototyplng L3 Voltage 50 110 100 percent
Experiment planning < ms execution speed
Online prediction 10 times speedup

Model-based control

Edelen et al., NeurlPS 2019

ML modeling enables accurate predictions of system responses with unprecedented speeds, opening up new avenues for high-fidelity

online prediction, tracking of machine behavior, and model-based control



https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf

In Regular Use: Injector Surrogate Model at LCLS ™

Solenoid

* ML models trained on detailed physics simulations with nonlinear collective effects Laser-Heater

* Accurate over a wide range of settings = calibrate to match machine measurements

* Used to develop/prototype new algorithms before testing online
(e.g. BAX w/ 20x speedup in emittance tuning https://arxiv.org/abs/2209.04587)

Emittance
*  Will provide initial Twiss parameters for downstream online model for optics matching \ N Screens/Wires
* Working on integrating model information to further speed up optimization algorithms RE [ — OTR2
Deflector \
s Simulation Neural Network y Profile
-l 040
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ML models trained on simulations and measurements have enabled fast prototyping of new optimization algorithms, facilitated rapid model

adaptation under new conditions, and can directly aid online tuning and operator decision making


https://arxiv.org/abs/2209.04587

Smooth interpolation
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Include high-dimensional input information = better output predictions Surrogate-boosted design optimization



online

Example:Warm Starts from Online Models E. Cropp et al, in preparation

" .

g = 2 : 55§

2 ._ | = : — _I_II_DI_I_ EES Can work even under distribution shift

\ = 7
."l Y — Eon 0.125 Train
i drifting inputs quads for flat - os I C Test(andtest) | F o100 B Jest (3hd test)
\o— beam transform T ., ; ‘ s ,
\ > ansto) ~.._new quad settings il E ooms ’
4 Gun RF read backs . 0.10 H distribution <
; . . 2 0.050
. (phase and amplitude) N // shift g gl
B N P 0.05 i © 0.025 i
QE.) Virtual Cathode Image Beam Statistics on Screen: | “‘. ajeto / 0.000 .
] Statistics (spot size, intensity) Oy ~i front 0.00 y ; - . 50 55 60 65
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B Y \

L / X,y centroids \
Flat Beam Quads (3) @ / NN start point intialisolut
74
- 7 Iinitial solution
== Multi-Objective Genetic Algorithm from neural

network model
* Round-to-flat beam transforms are challenging to optimize
= 2019 study explored ability of a learned model to help

fine-tuning

* Trained neural network model to predict fits to beam
image, based on archived data

hand tune

* Tested online multi-objective optimization over model (3
quad settings) given present readings of other inputs

* Used as warm start for other optimizers

Hand-tuning in seconds vs. tens of minutes

* Trained DDPG Reinforcement Learning agent and tested on B . .
) . o - oost in convergence speed for other algorithms
machine under different conditions than training



Uncertainty Quantification / Robust Modeling / Model Adaptation

Major area of AlI/ML research: statistical distribution shift between

training set new conditions
training and test data degrades prediction

8 8

c c

Distribution shift is extremely common in accelerators, due to both 8 8

. . . . O (O]

deliberate changes in beam configuration and uncontrolled or hidden

variables model input model input

Example: beam size prediction and uncertainty estimates under drift from a neural network
Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a qualitative metric for uncertainty

175 Measured

Predicted (Ensemble Mean)
150

1IN

unseen reglon

50

20000 40000 60000 80000 100000
Sample Number (increasing time)

Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally




Y} scatea

Uncertainty Quantification / Robust Modeling

Essential for decision making under uncertainty (e.g. safe opt., intelligent sampling, virtual diagnostics)
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A. Mishra et. al., PRAB, 2021

Current profile [kA]

o~
o

=
s}

[
=]

o
n

o
=)

—— Measured

‘/g regions
* X

unseen

SR
L

4000 6000
Sample Number (Time Ordered)

In-distribution

—— Predicted - ensemble

===~ 90% [0.95-0.05] - quantile [ #20 - ensemble

Out-of-distribution

N

-

—100 0 100
Time [fs]

o

Current profile [KA]

—-200 -100 0 100 200
Time [fs]

longitudinal phase space
(quantile regression + ensemble)
O. Convery, et al,, PRAB, 202

Current approaches

. Ensembles

*  Gaussian Processes
e Bayesian NNs

. Quantile Regression

X . *xiL Gupta  Neural network with quantile
97.5% Quantile [ regression predicting FEL pulse

2.5% Quantile

° X Measurements Available for Training energy Gt LCLS

Measurements Removed from Training
Median

8000 10000

Standard Deviation

Simulation Blur Neural Network

x Profile

01
0.2
03

Counts (arb.)

05
0.6
0.7

01 02 03 04 05 06 07
x (m)

06 04

x (m)

04 02 06 04 02 02

v tm) v tm)

Simulation Blur Neural Network Xprcfia

Standard Deviation

04
02 /
0.0 M«/ e

025 030 035 040 045 050 055 060
x(m)

05 04 03 05 04 03

x (m) X (m) x(m)

05 04 03

LCLS injector transverse phase space (ensemble)



Goal: Full Integration of AI/ML Optimization, Data-Driven Modeling, and Physics Simulations

Working on a facility-agnostic ecosystem for online simulation, ML modeling, and Al/ML driven characterization/optimization

Will enable system-wide application to aid operations, and help drive Al/ML development (e.g. higher dimensionality, robustness,

combining algorithms efficiently)

2 Model Prediction Displays Model Output Predictions (e.g. beam images, scalars) HPC cluster
=% P | (e.g. SDF at SLAC,
vl & i , _ NERSC at LBNL)
< U3 g Online Modeling

C
5

Measured Input Data Data High-fidelity Physics
(accelerator settings, processing Simulations

input diagnostics)

Cluster Compute
(CPU,GPU)

14 GeV

Adaptive ML Models

L3-linac

EPICS
Control

Measured Output Data Data
(scalars, images processing
describing the beam)

Online Optimization
and Characterization Tools

Archives
(Measurements,

BCT50 Mev BC243 Gev

Active Learning +
Efficient Exploration

L1X

Predictions, and
Models)

Model and ML-Based
Changes in Accelerator Settings Optimization

" Rrr
E cun
Laser
diagnostics

gun
" ejeQ puE S|9POI |EI1I0ISIH

ﬁ Online Control GUI «

Making good progress toward this vision with open-source, modular software tools



Modular, Open-Source
Software Development

Community development of re-usable,

reliable, flexible software tools for

Al/ML workflows has been essential to
maximize return on investment and ensure

transferability between systems

Modularity has been key: separating
different parts of the workflow + using
shared standards

Xopt.step()

Pass sample(s) to be evaluated

Generator Evaluator
VOCS Generates sample + Evaluates

Defines variables, points objective function

objectives and
constraints

Retrieve result(s), handle errors, add data to generator, store results etc.

vocs: algorithm:
name: TNK test name: bayesian_exploration
variables: Optlong:_ .
x1: [0, 3.14159] n_initial_samples: 5
x2: [0, 3.14159] nEEes A
objectives: {yl: MINIMIZE} generator_options:
constraints: :
c1l: [GREATER_THAN, 0] #Slgma:.
c2: ['LESS_THAN', 0.5] use_gpu:

batch_size: 1
[[0.01, @.0],
False

Different software for different tasks:
Optimization algorithm driver (e.g. Xopt)
Visual control room interface (e.g. Badger)

Simulation drivers (e.g. LUME)

Standards model descriptions, data formats,
and software interfaces (e.g. openPMD)

Online model deployment (LUME-services)

More details at https://www.lume.science/

Optimizer
standard
LUME data

/

Simulation °FFJI6 format [ERCEELS
Impact
ASTRA } gen_1.json X
GPT
Bmad v root:
G . » variables:
enesis generation: 1
SRW » vocs:

» error: [] 1241 items
» inputs: [] 1241 items
» outputs: [] 1241 items

Online Impact-T simulation and

live displays; trivial to get running

on FACET-II using same software
tools as the LCLS injector

Modular open-source software has been essential for our work. We welcome new users and contributors.


https://www.lume.science/

LUME-services: An online modeling service built on microservices

Provide continuously executing online models

*  Slow-executing physics simulations
*  Fast-executing ML surrogates
Generality of tooling

*  Provide abstracted interfaces for model packaging
*  Provide standardized set of services for composing applications
EPICS integration

*  Collect PV values over EPICS and queue simulations
*  Serve model output over EPICS using programmatic IOC

Example applications:
Particle data or screen images (e.g. laser profile) as input (distgen = Impact)
Advanced online visualization
Optimization using online model information (e.g. prior mean for Bayes opt)

gun L1X
£ Q l , ) XTCAV
N\, L1SV L2-linac_,. L3-linac = \
[gm—y o -— I Hgg ]
EPICS BClsoMev B243Gev  14Gev undulator

"= |

t

Online Modeling Service

Have used at LCLS for linaclinjector, FACET-II injector, LCLS-Il injector = now want to interface with tuning (e.g. model info = Xopt)

Impact Dashboard:

LCLS Injector Ul w/ EPICS-based widgets (Using LUME-EPICS tools):

LCLS Cu Injector



https://slaclab.github.io/lume-epics/

LUME-services: An online modeling service built on microservices

* LUME-services is a Python package providing data APIs for inter-
service interactions and user tooling

* Models are pip-installable Python packages and templates may be
auto-generated using the LUME-services tools

®* Models run in containers when a user schedules a workflow run

* The template provides Continuous Integration (Cl) tools (e.g.
GitHub actions) for users to use for testing and deployment

* Have demoed for a variety of physics sims and ML models at SLAC Model Registry  Job e ™ BosuksDaisbans Vel Sipening,  OupSaee
ervice

—> now testing / improving for new cases \_ J

* Have not yet integrated MLOps components (e.g.
continuous/triggered automated model adaptation)

* Resources:

* |ume-services https:/slaclab.github.io/lume-services/demo/ Interface for packaging arbitrary models, model registry
* lume-model https:/slaclab.github.io/lume-model/ Enforcement of minimal metadata (model descript, owner, model type, PVs)
* lume-epics https://slaclab.github.io/lume-epics/ Ability to scale to arbitrary number of models and clients

* distgen https://github.com/ColwynGulliford/distgen

Result storage + programmatic I0C for model results

Infrastructure for reliable, continuous online model deployment and model version tracking / updating

Aimed for transferrable design between platforms - we welcome collaborators!


https://slaclab.github.io/lume-services/
https://slaclab.github.io/lume-services/demo/
https://slaclab.github.io/lume-model/
https://slaclab.github.io/lume-epics/
https://github.com/ColwynGulliford/distgen

Variety of Successes with Online Modeling and Optimization Tools So Far

~

Automatic Exploration

* Digital twins: Online simulation and modeling (constrained to useful vahes
of emittance and match)

with LUME infrastructure + adaptive ML models )
have been used with LCLS, LCLS-Il, and FACET-II

Y

Comprehensive ML ]

* Data collection/characterization: Smart [ Models of Injector
sampling for efficient characterization
successfully/robustly used online

- data used directly to create ML model

* ML-enhanced optimization: numerous
successes with new algorithms for safe, efficient
online tuning (e.g. injector emittance tuning, FEL
pulse energy tuning, longitudinal phase space
tuning, sextupole tuning for beam size)

* Software transferability: have shown easy
transfer of modeling and tuning software between
LCLS/LCLS-II/FACET-Il accelerators and to other
labs (e.g. AWA at Argonne); now working integrate

between accelerator/photon side at LCLS/LCLS-II YEx

Y&y
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LCLS-II live simulation of injector (with nonlinear collective effects
included) and online re-calibration to match measurements

Used combination of online physics
simulation and custom Bayesian tuning
algorithms in LCLS-Il injector commissioning

- achieved best emittance to date

Critical steps toward having an adaptive digital twin system and model-guided, ML-enhanced optimization have been demonstrated
- now need infrastructure investment + more incorporation into regular operations




Summary

General strategy for comprehensive tuning at SLAC:

. Improve global models (accuracy, expressivity, speed, uncertainty estimates, adaptability)
. Develop algorithms for exploration and optimization of new parameter spaces

. Incorporate physics with ML modeling wherever useful

. Set up algorithms and software tools that link each of the above

Making lots of progress in these individual areas and increasingly using combinations of approaches

Some tools are integrated into regular operations (e.g. Badger, Xopt), others are used regularly offline (e.g. Xopt, LUME),
others need substantial investment / work (e.g. LUME-services)

Have been placing much emphasis on modular, interoperable software tools / standards - tools have been used now for a
variety of tasks at SLAC and AWA

Next slide: pain points



Pain Points > Where have we encountered challenges?

Data coordination
*  Consistent BSA (120 Hz) accelerator and photon side data streams (plus tools for combining)
*  lhz archive, 120 Hz archive, Matlab files, etc

« Cameras (saving images + archiving them, accurate timestamps to correlate with BSA data) = many
upgrades but some remain TBD after years

 Data cleaning
*  Many variables, much unknown => have preferred to use data from known shifts
*  How to flagffilter for different machine states from the archive
*  Sensitivity/feature importance = would be nice to filter variables easily for different problems (archive
data doesn’t represent all variables well; can use smart sampling to supplement)

* Continuous deployment/integration of simulation models
* Need to do I/O between control system and HPC
e Managing “virtual” accelerators (PV naming, etc)
*  Biggest problem: people power + software engineering support

* Logistical/social: beam time for testing, socialization of tools into control room, buy-in from operations
- need cooperative development cycle with operations and time to test in order to make truly robust tools



(1) Developing new approaches for accelerator optimization/characterization and faster higher-fidelity system modeling,

(2) developing portable software tools to support Al/ML, (3) integrating these into regular use

Efficient optimization and characterization (useful also for

integrated development cycle . .. . S
Online prediction with physics sims simulation exploration/design, data generation)

and fast/accurate ML models R y—

Fundamental Software
AI/ML Research Tools

=
[

, validity probability

o
0

GP w/ physics basis-function
} == GP w data MLII
+ Simplex
=== RCDS

Beam loss rate [mA/min]
=
o

o os
3 ° 1 06
04 . o 04
1 . 3 F 02
00 ’ & & J
o6 oo os

o
o

Testing/Deployment
(offline and online)

Region ok Region not ok Step

Output constraints learned on-the-fly

Representation learning

JPRTT PR (e.g. better ways of modeling beams)
. . . Techniques for Hoe = (o fe o 1) @
Adaptation of models and identification of sources 9 N

o 4 . . . . Combinin Hysteresis model
of deviation between simulations and as-built machine 8 +

physics and ML (more

e NN w4 o, NN . Magnetization L ? :
s T o MpACTT e o o, IMPACTT i reliable/transferrable, = M(Ho) M
£ e . + = + 0y meas. i X
2 ) i e require less data, more § Casion proces
o 08 + . . . model
Eos interpretable), including Software packages and
g 0.4 . . Beam measurement .
Zo: , differentiable Yo=J(@)+e standards for data generation,
0.0 0.0 H . . . .
_— simulators modeling, and optimization (LUME,
Integrated Solenoid Field (kG-m) Integrated Solenoid Field (kG-m)

xopt, Badger) @t

0 50 100 150 200



Backups

25



R . . - Cyclel Regular GP
Example: Differentiable Physics + Cycle 2 Model
ML Modeling of Hysteresi I [
odeling or nysteresis g == Model )
2= =
g 1.0 1 P
Magnetic hysteresis has been a major impediment s % g
i . . . . . M tind <
to hlgh-Prec?lsmn tuning = historically required ‘é 0.8 4 4 g SIS LE)
standardization of magnets S ST ' ©
= [}
o} < 0
. - . 0.6 1 £ 0
New modeling approach combining classical y £
Preisach model and a Gaussian Process e
T T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2
Current (A) Current (A)
Applied magnetic field Joint modeling of hysteresis and beam propagation is more accurate and enables in-situ
Hoy = {Ho, Hy, ..., Hi} hysteresis characterization
—— GP, H=0
+ Hysteresis model 1 S =5 bui BO on sys.
101 4 TET 101! 4 with hysteresis
E == GP, H,=0.4
== H-GP, H=0.1
Magnetization - \ ==: H-GP, H,=0.4
@y = M(Ho,) 10 3 10° 5
Gaussian process 10-1 _ 0-14
model ]
Beam measurement I T I I I T T T T T
Y, = flz) +¢ 0 50 100 150 200 0 50 100 150 200
Iteration Iteration

R. Roussel, et al., PRL, 2022 Higher-precision optimization possible when including hysteresis effects in model

Promising example showing the power of differentiable physics and ML models to enable high-precision characterization and control with minimal data.



Finding Sources of Error Between Simulations and Measurement

Many non-idealities not included in physics simulations:
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static error sources (e.g. magnetic field nonlinearities, physical offsets) ] —— OxNN
e 0, IMPACT-T

=
N]
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time-varying changes (e.g. temperature-induced phase calibrations)

=
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Want to identify these to get better understanding of machine > fast-executing ML model

allows fast | automatic exploration of possible error sources simultaneously
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Calibration offset in solenoid strength found automatically with neural network model (trained in simulation, then calibrated to machine)
Example above is simulation-to-machine, but can adapt model over time as well

First studies look promising > current work focuses on examining robustness and extending to larger subsystems



Example: Multi-Objective Bayesian Optimization (MOBO)

Multi-objective optimization (MOO) in accelerators is
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R. Roussel, et al.,
PRAB (2021)

Observation

Unprecedented ability to fully characterize tradeoffs between beam parameters in real accelerator systems.



Broad Set of Areas for ML to Impact Operation
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+ need uncertainty quantification for all
+ can incorporate physics information in all


https://arxiv.org/abs/2007.14340

Component Architecture
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In reality things are much more difficult...

computationally expensive simulations
Simulation Measurement

fluctuations/noise
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Relative energy (MeV)

= T T g T
From the 2017-2018 run.

40 -40 -20 0 20 40 o

Longitudinal position(zm)

-20 0 20
Longitudinal position (zzm)

. . 1F. Wang
=T 23,0

10 hours on thousands -
of cores at NERSC! 054402, 2017

laser at FAST

Booster Q-meterbased inj. eff. measure has a calibration error.
. . . . . .
80 100 120 140 160 180
time (davs)

hidden variables / sensitivities

reality
Vs.
simulation

€5, [mm-mrad]

drift over time

0 250 500 7ggmp|1£t:‘?]m;ezrso 1500 1750 2000 nonlinear
. effe
many small, compounding . t:ESI/ i
. NS licies
sources of uncertainty




Virtual Diagnostics Provide information about parts of the system that are typically inaccessible
(destructive, too slow, not directly measurable)
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Adaptively tune a simple physics model Fill in shots: use archive data to learn correlation between
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“Physics-informed’ modeling = incorporate physics domain knowledge to reduce need for

data, and aid interpretability + generalization

Differentiable Taylor map physics model + weights = train like ML model
needed very little data to calibrate PETRA IV model

Many approaches: Ivanov et al, PRAB, 2020
* Combine physics representations and machine oL 2 o |
. DB & Fine-tuned TM-PNN
learning models directly (e.g. differentiable @% ] """ SRR N
. . X o i X, X, 0311 [ physics-based model (real)
simulations) % Foz0
B 0.29
. . . L 0.28 Physics-based model (ideal) l\
* Add physics constraints to output metrics A it A e
Qx
* Force to satisfy expected symmetries
(e.g. inductive biases in ML model) Physics-driven representation learning

(e.g. encoder-decoder neural network models)

* Loose form: learn from many physics sims in a

Many examples in our

way that results in good representation of the feld!

physics (also related to representation learning)

Review paper: Karniadakis et al, Nat Rev Phys 3, 422440 (2021)
Snowmass accelerator modeling white paper: arXiv:2203.08335



https://arxiv.org/abs/2203.08335

ML-Assisted Optimization and Characterization

Large, nonlinear, and sometimes noisy search spaces for
accelerators and detectors - need to find optima and

examine trade-offs with limited budget (computational
resources, machine time)

ML-assisted optimization leverages learned representations
to improve sample efficiency. Some methods also include
uncertainty estimation to inform where to sample next
(avoid undesirable regions, target information-rich areas).

Similar set of tools for operation and design (with a few
differences: parallel vs. serial acquisition, need for uncertainty-
aware/safe optimization)

y
Bayesian optimization / active learning / reinforcement learning
- All learn iteratively via online interaction with the system

next point to search
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Faster multi-objective optimization
with Bayesian optimization and
iterated surrogate models

R. Roussel et al., arXiv:2010.09824
A. Edelen et al., arXiv:1903.07759

Local generative
surrogates and gradient
descent for the SHiP
magnetic shield design
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