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Nonlinear, high-dimensional optimization problem

Beam exists in 6-D position-momentum phase space

Have incomplete information: measure 2-D projections or reconstruct 
based on perturbations of upstream controls (e.g. tomography, quad scans)

Have dozens-to-hundreds of controllable variables and hundreds-of-
thousands (up to millions for LCLS-II) to monitor 
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A. Marinelli, IPAC’18A. Marinelli, et al., Nat. Commun. 6,  6369 (2015)

Many tuning problems at LCLS/LCLS-II and FACET-II at 
SLAC require detailed phase space customization for 
different experiments



J. Qiang, et al., PRSTAB30, 
054402, 2017

MeasurementSimulation

“10 hours on thousands of 
cores at the NERSC”
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A. Marinelli, et al., Nat. Commun. 6,  6369 (2015)

Rapid beam 
customization

Achieve new 
configurations + 

unprecedented beam 
parameters 

Fine control to 
maintain

stability within 
tolerances 

wide spectrum of tuning needs



moreassumed knowledge of machine

Model-Free 
Optimization

Observe performance change after a 
setting adjustment

à estimate direction or apply 
heuristics toward improvement

Model-guided 
Optimization

Update a model at each step

à use model to help select the next 
point

Global Modeling + 
Feed-forward Corrections

Make fast system model

à provide initial guess (i.e. warm 
start) for settings or fast compensation

gradient descent
simplex

ES

Bayesian optimization
reinforcement learning

ML system models +
inverse models

Tuning approaches leverage different amounts of data / previous knowledge
à suitable under different circumstances

J. Kirschner

less

Tuning research at SLAC is aimed at combining the strengths of different approaches.
General strategy for our research: start with sample-efficient methods that do well on new systems, then build up to more 

data-intensive and heavily model-informed approaches. 



Sextupole tuning for IP at FACET-II

Longitudinal phase space 
tuning on LCLS

Hanuka et. al. PRAB , 2021

Higher-precision optimization possible 
when including hysteresis effects in model

BO on sys. with 
hysteresis

Hybrid BO on 
sys. with 
hysteresis

Duris et. al. PRL , 2020

Roussel et. al. PRL , 2022

Roussel et. al. PRAB , 2021

FEL pulse energy tuning at LCLS Loss rate tuning at SPEAR3

Multi-objective 
Bayesian Optimization

target

Many successes 
with Bayesian 
Optimization

(+ improvements)

Algorithms being implemented/distributed in Xopt: https://github.com/ChristopherMayes/Xopt

https://github.com/ChristopherMayes/Xopt


Efficient Emittance Optimization with Partial Measurements
• Instead of tuning on costly emittance measurements directly: learn a fast-executing model online for 

beam size while optimizing à learn on direct observables (e.g. beam size); do inferred “measurements” (e.g. emittance)
• New algorithmic paradigm leveraging “Bayesian Algorithm Execution” (BAX) for 20x speedup in tuning

simulation

experiment

Paradigm shift in how tuning on indirectly computed beam measurements (such as emittance) is done, with 20x improvement over 
standard method for emittance tuning. à Now working to integrate into operations. 

àAlso now working to incorporate more informative global models /priors rather than learning the model from scratch each time.

model is learned
on-the-fly

Convergence of beam size prediction error 
gives practical indicator of optimization 
convergence (no need to do direct emittance 

measurement until the end)

Found equivalent quality to hand-
tuning in about 70 iterations (estimate 

this would take a few minutes with 
computationally optimized routine)

https://arxiv.org/abs/2209.04587

https://arxiv.org/abs/2209.04587


Neural Network System Models + Bayesian Optimization

Summer ’22 undergrad intern
Connie Xu

Combining more expressive models with BO à important for scaling up to higher-dimensional 
tuning problems (more variables)

Model 2
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Correlations Between 
Predictions and Ground Truth 

Even prior mean models with substantial inaccuracies provide a 
boost in initial convergence 

à now testing on machine and refining approach 

Good first step from previous work: use neural network 
system model to provide a prior mean for a GP

Used the LCLS injector surrogate model for prototyping
variables: solenoid, 2 corrector quads, 6 matching quads
objective: minimize emittance and matching parameter

NeurIPS proceeding: https://arxiv.org/abs/2211.09028

regular Bayesian
optimization

prior mean from 
models with different fidelity



Better Data Sampling:
Bayesian Exploration

adaptive sampling

learning 
constraints

proximal
biasing

R. Roussel et. al. 
Nat. Comm. 2021
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Enables sample-efficient 
characterization of high-dimensional 
spaces, while respecting both input 

and output constraints

Efficient 
Characterization with 
Bayesian Exploration

Enables sample-efficient 
characterization of high-dimensional 

spaces, while respecting both input and 
output constraints



Efficient Characterization of FACET-II Injector

• Used Bayesian Exploration for efficient high-dimensional characterization (10 
variables) of emittance and match at 700pC: 2 hrs for 10 variables compared 
to 5 hrs for 4 variables with N-D parameter scan

• Data was used to train neural network model of injector response predicting x-
y beam images. GP ML model from exploration predicts emittance and match.

• Example of integrated cycle between characterization, modeling, and 
optimization à now want to extend to larger system sections and new setups

Use of Bayesian exploration to generate training data was sample-efficient, reduced burden of data cleaning, and resulted in a well-
balanced distribution for the training data set over the input space. ML models were immediately useful for optimization.
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transverse phase space

Automatic Exploration
(constrained to useful values 

of emittance and match)

Comprehensive ML 
Models of Injector

Setting changes on 10 variables (solenoid, bucking coil, corrector quads and matching quads)

x-y emit, 
match, 
and 
beam 
images

FACET-II Injector

x

y



Fast-Executing,  Accurate System Models

10

Accelerator simulations that include nonlinear and 
collective effects are powerful tools, but they can 

be computationally expensive

ML models are able to provide fast approximations to simulations
(“surrogate models”)

< ms execution speed

106 times speedup
10 hours on 
thousands of 
cores at NERSC! Edelen et al., NeurIPS 2019

ML modeling enables accurate predictions of system responses with unprecedented speeds, opening up new avenues for high-fidelity 
online prediction, tracking of machine behavior, and model-based control

https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf


Fast-Executing,  Accurate System Models

11

< ms execution speed

106 times speedup

Bringing simulation 
tools from HPC 

systems to 
online/local 
compute

Online prediction
Model-based control

Control prototyping
Experiment planning

ML models are able to provide fast approximations to simulations
(“surrogate models”)

ML modeling enables accurate predictions of system responses with unprecedented speeds, opening up new avenues for high-fidelity 
online prediction, tracking of machine behavior, and model-based control

Edelen et al., NeurIPS 2019

https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf


• ML models trained on detailed physics simulations with nonlinear collective effects
• Accurate over a wide range of settings à calibrate to match machine measurements

• Used to develop/prototype new algorithms before testing online 
(e.g. BAX w/ 20x speedup in emittance tuning https://arxiv.org/abs/2209.04587)

• Will provide initial Twiss parameters for downstream online model for optics matching
• Working on integrating model information to further speed up optimization algorithms

prototyping 
optimization
algorithms

In Regular Use: Injector Surrogate Model at LCLS 

ML models trained on simulations and measurements have enabled fast prototyping of new optimization algorithms, facilitated rapid model 
adaptation under new conditions, and can directly aid online tuning and operator decision making

Automatic adaptation of models and identification of sources of 
deviation between simulations and as-built machine

interactive model widget 
and visualization tools

ML model matches 
simulation under 

interpolation 
Simulation and ML model trained 
on it are qualitatively similar to

measurements under interpolation 
(setting combinations reasonable 

distance from training set)

https://arxiv.org/abs/2209.04587


Physics Sim: 
~95k core hrs, 131k sims

2246 cores, 36 hours

Neural Network: 
~2 mins on a laptop

(500 sims for training)

Smooth interpolation 
Example 𝝈𝒙 surface from 2D scan, LCLS-II Injector

Surrogate-boosted design optimization 

Warm starts for 
optimization

ML
Inverse 
Model

L1S phase
BC2 peak current

Local 
optimizer

Suggested 
initial 

settings

A. Scheinker, A. Edelen, 
et al, PRL, 2018

A. Edelen
et al., PRAB, 

2020

Deconvolution Layers

Cavity phase

Solenoid field

Bunch Charge

N Fully Connected 
Hidden Layers

… N - 2 …

Scalar outputs
VCC Size

Convolution Layers

# Particles

Mean X, Y, Z

Beam Kinetic Energy

Norm. Emittances

Beam Sizes

Mean X’, Y’, Z’

Scalar inputs

Include high-dimensional input information à better output predictions

L. Gupta, et al, 
MLST, 2021

A. Edelen et al., NeurIPS 2019



E. Cropp et al., in preparation

Hand-tuning in seconds vs. tens of minutes

Boost in convergence speed for other algorithms

Can work even under distribution shift

• Round-to-flat beam transforms are challenging to optimize 
à 2019 study explored ability of a learned model to help

• Trained neural network  model to predict fits to beam 
image, based on archived data

• Tested online multi-objective optimization over model (3 
quad settings) given present readings of other inputs

• Used as warm start for other optimizers

• Trained DDPG Reinforcement Learning agent and tested on 
machine under different conditions than training

Example: Warm Starts from Online Models



Uncertainty Quantification / Robust Modeling / Model Adaptation

Major area of AI/ML research: statistical distribution shift between 
training and test data degrades prediction

Distribution shift is extremely common in accelerators, due to both 
deliberate changes in beam configuration and uncontrolled or hidden 

variables

Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally

unseen region

model input

co
un

ts

training set new conditions

model input

co
un

ts

Example: beam size prediction and uncertainty estimates under drift from a neural network 
Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a qualitative metric for uncertainty 



Sample Number (Time Ordered)

Neural network with quantile 
regression predicting FEL pulse 
energy at LCLS

unseen 
regions

test 
data

L. Gupta

BNN Predictions
ASTRA Simulation

White area 
– values 
left out of 
training

A. Mishra et. al., PRAB, 2021
LCLS injector transverse phase space  (ensemble)

Scalar parameters for the 
LCLS-II injector

(Bayesian neural network)

Essential for decision making under uncertainty (e.g. safe opt., intelligent sampling, virtual diagnostics) 
Current approaches 
• Ensembles
• Gaussian Processes
• Bayesian NNs
• Quantile Regression

longitudinal phase space
(quantile regression + ensemble)

In-distribution

Out-of-distribution 

O. Convery, et al., PRAB, 2021

Uncertainty Quantification / Robust Modeling



Goal: Full Integration of AI/ML Optimization, Data-Driven Modeling, and Physics Simulations

Data 
processing

Data 
processing

FACET-II LCLS

Data 
processing

Data 
processing

FACET-II LCLS

Cluster Compute
(CPU,GPU)

Working on a facility-agnostic ecosystem for online simulation, ML modeling, and AI/ML driven characterization/optimization

Will enable system-wide application to aid operations, and help drive AI/ML development (e.g. higher dimensionality, robustness, 
combining algorithms efficiently)

Making good progress toward this vision with open-source, modular software tools



Community development of re-usable, 
reliable, flexible software tools for 
AI/ML workflows has been essential to 

maximize return on investment and ensure 
transferability between systems

Modularity has been key: separating 
different parts of the workflow + using 

shared standards

Modular, Open-Source 
Software Development

Different software for different tasks:

Optimization algorithm driver (e.g. Xopt)

Visual control room interface (e.g. Badger)

Simulation drivers (e.g. LUME)

Standards model descriptions, data formats, 
and software interfaces (e.g. openPMD)

Online model deployment (LUME-services)

Online Impact-T simulation and 
live display; trivial to get running 
on FACET-II using same software 

tools as the LCLS injector 

LCLS

FACET-II

standard
data 

format
LUME

More details at https://www.lume.science/

Simulation

Optimizer

Modular open-source software has been essential for our work.  We welcome new users and contributors.

https://www.lume.science/


LUME-services:  An online modeling service built on microservices
Provide continuously executing online models

• Slow-executing physics simulations
• Fast-executing ML surrogates

Generality of tooling 

• Provide abstracted interfaces for model packaging
• Provide standardized set of services for composing applications

EPICS integration

• Collect PV values over EPICS and queue simulations
• Serve model output over EPICS using programmatic IOC

Online Modeling Service

LCLS  Injector UI w/ EPICS-based widgets (Using LUME-EPICS tools):

Impact Dashboard:

Example applications:
Particle data or screen images (e.g. laser profile) as input (distgen à Impact)
Advanced online visualization
Optimization using online model information (e.g. prior mean for Bayes opt)

Have used at LCLS for linac/injector, FACET-II injector, LCLS-II injector à now want to interface with tuning (e.g. model info à Xopt)

https://slaclab.github.io/lume-epics/


LUME-services:  An online modeling service built on microservices

• LUME-services is a Python package providing data APIs for inter-
service interactions and user tooling

• Models are pip-installable Python packages and templates may be 
auto-generated using the LUME-services tools

• Models run in containers when a user schedules a workflow run

• The template provides Continuous Integration (CI) tools (e.g.
GitHub actions) for users to use for testing and deployment

• Have demoed for a variety of physics sims and ML models at SLAC 
à now testing / improving for new cases

• Have not yet integrated MLOps components (e.g.
continuous/triggered automated model adaptation)

• Resources:
• lume-services https://slaclab.github.io/lume-services/demo/
• lume-model https://slaclab.github.io/lume-model/
• lume-epics https://slaclab.github.io/lume-epics/
• distgen https://github.com/ColwynGulliford/distgen

Interface for packaging arbitrary models, model registry

Enforcement of minimal metadata (model descript, owner, model type, PVs)

Ability to scale to arbitrary number of models and clients

Result storage + programmatic IOC for model results

Infrastructure for reliable, continuous online model deployment and model version tracking / updating
Aimed for transferrable design between platforms à we welcome collaborators!

work 
in p

rogre
ss

https://slaclab.github.io/lume-services/
https://slaclab.github.io/lume-services/demo/
https://slaclab.github.io/lume-model/
https://slaclab.github.io/lume-epics/
https://github.com/ColwynGulliford/distgen


Variety of Successes with Online Modeling and Optimization Tools So Far 

LCLS-II live simulation of injector (with nonlinear collective effects 
included) and online re-calibration to match measurements

• Digital twins: Online simulation and modeling 
with LUME infrastructure + adaptive ML models 
have been used with LCLS, LCLS-II, and FACET-II

• Data collection/characterization: Smart 
sampling for efficient characterization 
successfully/robustly used online 
à data used directly to create ML model

• ML-enhanced optimization: numerous 
successes with new algorithms for safe, efficient 
online tuning (e.g. injector emittance tuning, FEL 
pulse energy tuning, longitudinal phase space 
tuning, sextupole tuning for beam size)

• Software transferability: have shown easy 
transfer of modeling and tuning software between 
LCLS/LCLS-II/FACET-II accelerators and to other 
labs (e.g.AWA at Argonne); now working integrate 
between accelerator/photon side at LCLS/LCLS-II

Critical steps toward having an adaptive digital twin system and model-guided, ML-enhanced optimization have been demonstrated 
à now need infrastructure investment + more incorporation into regular operations

Used combination of online physics 
simulation and custom Bayesian tuning 

algorithms in LCLS-II injector commissioning
à achieved best emittance to date

10 variables
Automatic Exploration
(constrained to useful values 

of emittance and match)

Comprehensive ML 
Models of Injector

FACET-II Injector

8x faster 
characterization 
than by hand



Summary

General strategy for comprehensive tuning at SLAC:

• Improve global models (accuracy, expressivity, speed, uncertainty estimates, adaptability)
• Develop algorithms for exploration and optimization of new parameter spaces

• Incorporate physics with ML modeling wherever useful
• Set up algorithms and software tools that link each of the above

Making lots of progress in these individual areas and increasingly using combinations of approaches

Some tools are integrated into regular operations (e.g. Badger, Xopt), others are used regularly offline (e.g. Xopt, LUME), 
others need substantial investment / work (e.g. LUME-services)

Have been placing much emphasis on modular, interoperable software tools / standards à tools have been used now for a 
variety of tasks at SLAC and AWA

Next slide: pain points



Pain Points à Where have we encountered challenges?

• Data coordination
• Consistent BSA (120 Hz) accelerator and photon side data streams (plus tools for combining)
• 1hz archive, 120 Hz archive, Matlab files, etc

• Cameras (saving images + archiving them, accurate timestamps to correlate with BSA data) à many 
upgrades but some remain TBD after years

• Data cleaning
• Many variables, much unknown à have preferred to use data from known shifts
• How to flag/filter for different machine states from the archive
• Sensitivity/feature importance à would be nice to filter variables easily for different problems (archive 

data doesn’t represent all variables well; can use smart sampling to supplement)

• Continuous deployment/integration of simulation models
• Need to do I/O between control system and HPC
• Managing “virtual” accelerators (PV naming, etc)
• Biggest problem: people power + software engineering support

• Logistical/social: beam time for testing, socialization of tools into control room, buy-in from operations 
à need cooperative development cycle with operations and time to test in order to make truly robust tools



Roussel et. al. Nat. Comm. 2021

Efficient optimization and characterization (useful also for 
simulation exploration/design, data generation)

Output constraints learned on-the-fly

ground truth validity probability

Hanuka et. al. PRAB , 2021

Techniques for 
combining

physics and ML (more 
reliable/transferrable, 

require less data, more 
interpretable), including 

differentiable 
simulators

Roussel et. al. PRL. 2022

Representation learning
(e.g. better ways of modeling beams)

Online prediction with physics sims 
and fast/accurate ML models

Adaptation of models and identification of sources 
of deviation between simulations and as-built machine

Fundamental 
AI/ML Research

Software 
Tools

Testing/Deployment 
(offline and online)

Software packages and 
standards for data generation, 

modeling, and optimization (LUME, 
xopt, Badger)

integrated development cycle

(1) Developing new approaches for accelerator optimization/characterization and faster higher-fidelity system modeling, 

(2) developing portable software tools to support AI/ML, (3) integrating these into regular use



Backups

25



Higher-precision optimization possible when including hysteresis effects in model

Example: Differentiable Physics + 
ML Modeling of Hysteresis

R. Roussel, et al., PRL, 2022

BO on sys. 
with hysteresis

Hybrid BO on sys.
with hysteresis

Regular GP
Model

Hysteresis + GP
Model

Promising example showing the power of differentiable physics and ML models to enable high-precision characterization and control with minimal data. 

Magnetic hysteresis has been a major impediment 
to high-precision tuning à historically required 
standardization of magnets

New modeling approach combining classical 
Preisach model and a Gaussian Process

Joint modeling of hysteresis and beam propagation is more accurate and enables in-situ 
hysteresis characterization



Finding Sources of Error Between Simulations and Measurement
Many non-idealities not included in physics simulations:

static error sources (e.g. magnetic field nonlinearities, physical offsets) 
time-varying changes (e.g. temperature-induced phase calibrations)

Want to identify these to get better understanding of machine à fast-executing ML model 
allows fast / automatic exploration of possible error sources simultaneously

injector
settings

laser image longitudinal/
transverse phase space

Without calibration

With calibration

Inputs
Laser radius
Laser spot sizes
Pulse length
Charge
Solenoid
L0A phase 
L0B phase
SQ quad
CQ quad
6 matching quads

Outputs
Beam size (x,y)
Emittance (x,y)
Bunch length

output beam
scalars

calibration transforms
(single node per input)

𝑦 = f(𝑤𝑥 + 𝑏)

frozen neural network 
layers trained on 

simulation

Calibration offset in solenoid strength found automatically with neural network model (trained in simulation, then calibrated to machine)
Example above is simulation-to-machine, but can adapt model over time as well 

First studies look promising à current work focuses on examining robustness and extending to larger subsystems



Example: Multi-Objective Bayesian Optimization (MOBO)

Can enforce 
smooth 

exploration

(no wild changes 
in input settings)

R. Roussel, et al., 
PRAB (2021)

Multi-objective optimization (MOO) in accelerators is 
traditionally done offline with high performance computing and 
simulations, or online at individual working points only

• MOBO enables full characterization of optimal beam 
parameter tradeoffs (i.e. the Pareto front) online with high 
sample-efficiency

• Has now been used experimentally at AWA, FACET-II, LCLS 
and SLAC UED

Unprecedented ability to fully characterize tradeoffs between beam parameters in real accelerator systems.



digital twins + online modeling
(fast sims, differentiable sims, model calibration, model adaptation)

ML-enhanced 
diagnostics 

(provide insight at faster rate, 
at higher resolution, 

non-invasively)

anomaly detection
failure prediction

(plan maintenance; 
alert to changes in machine; 
alert to interesting science) 

extract unknown
relationships + correlations

(feed into future control / 
design)

J. Duris
et al., 
PRL, 
2020

C. Emma et al., 
PRAB, 2018

+ need uncertainty quantification for all
+ can incorporate physics information in all 

D
ata 

processing

D
ata 

processing

FACET-II
LCLS

automated control
+ optimization

algorithm transfer between systems

Data reduction/rejection (kHz/MHz data streams)
Event triggering

Broad Set of Areas for ML to Impact Operation

R. Shaloo et al.
arXiv:2007.14340

https://arxiv.org/abs/2007.14340


Components

Component Architecture

High-level component Function

Model DB ● Stores model metadata
● Tracks versioned deployments and associated 

workflows

Synchronous Snapshot 
Service

● Single pulse EPICS PV collection
● Submission of Prefect workflow runs

Prefect Service ● Orchestration of workflows 
● Workflow monitoring
● Result management

Results DB ● Result storage

EPICS Output Server ● Monitors new entries to the results database
● Serves latest model output variables
● Responsible for uniqueness check
● Implement archiver integration

Data Visualization 
Apps

● Provide data visualization for model 
inputs/outputs

ELG Logging Stack ● Consolidation of in-cluster logs
● Cluster metrics in Grafana dash



In reality things are much more difficult…

nonlinear 
effects / 
instabilities

fluctuations/noise
(e.g. laser spot)

hidden variables / sensitivities

reality
vs.
simulation

drift over time 

F. Wang

many small, compounding 
sources of uncertainty

J. Qiang, et al., PRSTAB30, 
054402, 2017

MeasurementSimulation

10 hours on thousands 
of cores at NERSC!

computationally expensive simulations

laser at FAST



Provide information about parts of the system that are typically inaccessible 
(destructive, too slow, not directly measurable)

Virtual Diagnostics



“Physics-informed” modeling à incorporate physics domain knowledge to reduce need for 
data, and aid interpretability + generalization

Many approaches:
• Combine physics representations and machine 

learning models directly (e.g. differentiable 
simulations)

• Add physics constraints to output metrics

• Force to satisfy expected symmetries
(e.g. inductive biases in ML model)

• Loose form: learn from many physics sims in a 
way that results in good representation of the 
physics (also related to representation learning)

Differentiable Taylor map physics model + weights à train like ML model
needed very little data to calibrate  PETRA IV model

Ivanov et al, PRAB, 2020

Review paper: Karniadakis et al, Nat Rev Phys 3, 422–440 (2021)
Snowmass accelerator modeling white paper: arXiv:2203.08335

Physics-driven representation learning
(e.g. encoder-decoder neural network models)

useful latent space

Many examples in our 
field!

Latent 1
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https://arxiv.org/abs/2203.08335
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à design Gaussian Process kernel from expected correlations between inputs (e.g. quads)

à take the Hessian of model at expected optimum to get the correlations  

vertical emittance
tuning @SPEAR3

No measured data needed ahead of 
time, just a physics model

J. Duris et al., PRL, 2020 
A. Hanuka, et al., PRAB, 2021

FEL tuning @LCLS

Example: Physics-Informed Bayesian Optimization

Including correlation between inputs enables increased sample-efficiency and results in faster optimization
à kernel-from-Hessian enables easy computation of correlations even in high dimension


