
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

EPICS-TCA, a Node.js Library for EPICS 
Channel Access and PV Access Client 

Hao Hao

Oak Ridge National Laboratory

April 27, 2023



2

About Node.js

• Node.js is a “desktop” version of JavaScript
– Independent of web browser
– Allowed to use resources on the computer: TCP/UDP protocols, read/write files, …
– Derived from Google V8 engine, which is used in Chromium (Google Chrome, 

Microsoft Edge, …)
– Cross platform
– Can be possibly converted to a web application
– Development environment

• npm
• yarn
• …



3

Asynchronous Model in Node.js

• Event loop model enables rich asynchronous features
– Promise
– EventEmitter
– await-async

• Single threaded
– All operations in a function are atomic
– Can be multi-threaded by using e.g. worker thread

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick



4

Asynchronous Model in EPICS-TCA

• EPICS applications are usually not computationally intensive, and most 
functions are asynchronous: caget(), camonitor() …

• TCA uses Promise and async-await to ”block” the asynchronous call, then 
resolve the Promise to proceed.

Blocked in async function

Lift the blocking



5

Project Overview

• Uses “npm” to manage the project
– Easily adopt 3rd party libraries

• Uses TypeScript for coding
– A “typed” JavaScript, improve 

development efficiency and avoid 
runtime errors 

• Most code are encapsulated inside 
classes



6

Classes
• class Context

– Initialize program: create CA repeater thread, add UDP and TCP listeners
– Process Beacon
– Manage channels

• class UDPTransport, class TCPTransport
– Send and receive UDP and TCP messages, invoke listeners upon a new message 

arrival

• class Channel
– Lifecycle management of a channel: search, connect, get, put, and destroy
– Encode and decode most CA messages
– Manage monitors (class ChannelMonitor)

• class ChannelMonitor
– Subscribe, unsubscribe a CA monitor.



7

Application – get a value

• Create an NPM project: “npm init --yes”

• Install epics-tca package: “npm install epics-tca”

• Create a Node.js program, e.g. test01.js, with the following contents

• Run the program:



8

Application – tcaGet()

• Using TypeScript and async-await
– More robust and intuitive



9

Application – tcaMonitor()

• ChannelMonitor can be created by a Channel, with a 
callback function and desired data type 



10

Application – a WebSocket Server based on Node.js

• Start a WebSocket sever:

• Start client (Node.js code): 

Node.js server

IOC

Client #1

Client #2CA Protocol

WS Protocol

WS Protocol

IOC CA Protocol



11

Performance

• 100,000 PVs, connect to a local soft IOC, read value, and close
– ~ 6 s on M1 Pro Max Processor, ~ 60 microseconds per channel
– 1.3 GB memory, about 13.6 kB/channel

• 50,000 updates each second, monitor values
– 85% CPU, ~ 17 microseconds for each update
– 750 MB memory, ~ 15.4 kB/channel



12

Outlook

• CA Protocol
– IPv6 …

• PV Access Protocol
– Introspection data encoding/decoding is almost finished
– Network protocol is the next

• Optimize performance 
– Reduce memory footprint: carefully design data structure and logic, 

less GC

• More unit and integrated tests



13

Thanks!

https://code.ornl.gov/1h7/epics-tca


