

Machine Learning Operations for Accelerator Control

Tia Miceli (Lead - Accelerator AI/ML Group, Accelerator Controls Department, FNAL) **EPICS** Collaboration Meeting 24-28 April 2023

Why you need a sustainable way of developing, deploying, monitoring, and servicing ML applications (for accelerators)

 The only person that knew anything about application / model / code leaves

• The "reproducibility problem" in deep learning

• Life-cycle handling: is it still doing the right thing? If not, what does an accelerator operator do at 3 A.M.?

Why you need a sustainable way of developing, deploying, monitoring, and servicing ML applications (for accelerators)

 The only person that knew anything about application / model / code leaves

• The "reproducibility problem" in deep learning

• Life-cycle handling: is it still doing the right thing? If not, what does an accelerator operator do at 3 A.M.?

 \Rightarrow need self-documenting procedures

\rightarrow need advanced and automated "bookkeeping"

 \Rightarrow need to automate common updates

"The Reproducibility Problem" (in Al / ML)

• "I am able to train a model once, but I / someone else can't reproduce the same model weights again."

	Issue	
Typical	Weights are a little different	Some var
Typ	Weights are so different that model predictions are very different.	Training i
Tricky		
-		

Mitigating Best Practice

riation expected if training in parallel and on variety of hardware. Check within tolerance.

is getting stuck in local minima. A variety of training schema and hyper parameters and optimizers should be tried.

"The Reproducibility Problem" (in AI / ML)

• "I am able to train a model once, but I / someone else can't reproduce the same model weights again."

_		
	Issue	
Typical	Weights are a little different	Some var
	Weights are so different that model predictions are very different.	Training is
Tricky	Human mishandling, hard to detect	As <u>mod</u> perf
	Different datasets give different weights	This is version co
	Works for me, but not for you	Environm

Mitigating Best Practice

riation expected if training in parallel and on variety of hardware. Check within tolerance.

is getting stuck in local minima. A variety of training schema and hyper parameters and optimizers should be tried.

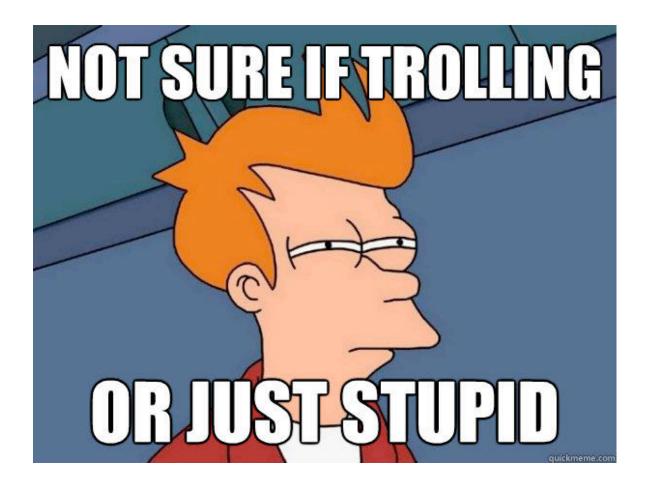
del's code is version controlled, also version control model's formance so that performance results don't get mixed up.

s to be expected within some tolerance. Just as model code is ontrolled, train/val/test datasets should be version controlled.

ment needs to be version controlled! (Packages and versions)

How do you serve an Al controller model?

- We could just throw it on the machine and hope for the best!
- Scary reasons not to do that:
 - Data drift (incoming data is different from what the model was trained to do)
 - [other side: model performs poorly]
 - Stuff stops working and the accelerator operators throw away your "solution"
- MLOps can help!
 - Ok, so how do I know if this bad stuff happens? Data & performance monitoring! Alarming! - What do I do when this happens? Trigger workflows! Automate retraining! Deploy updated
 - model!



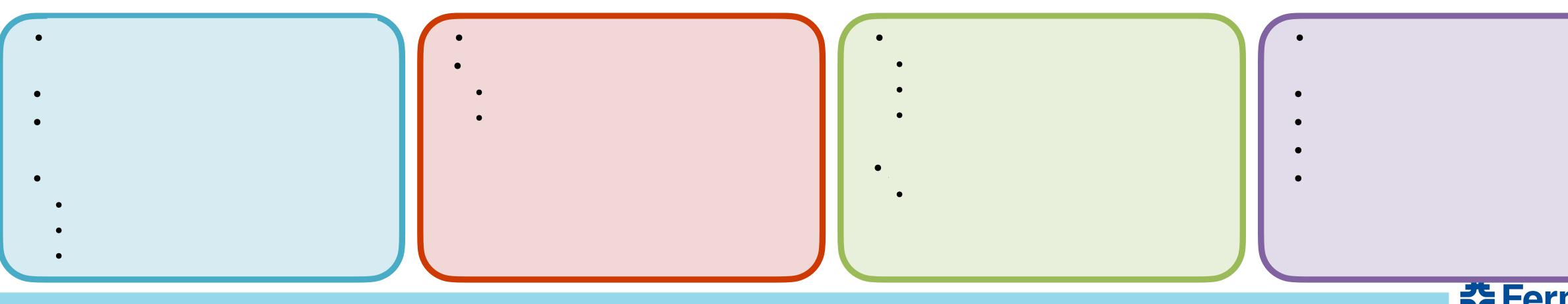
Machine Learning Operations (MLOps)

- Deploying an AI/ML capability for operations requires more than data science (i.e. data discovery, labeling, and AI/ML model building).
- Deploying an AI/ML capability requires further <u>engineering</u> & <u>stewardship</u>: - Live-streaming / live-batched-streaming data ingestion and transformation

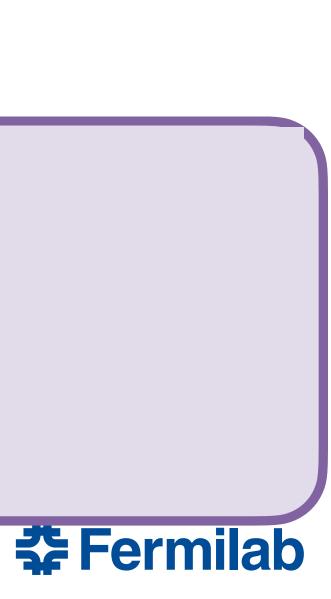
 - Model inference serving
 - Prediction streaming
 - Logging
 - Monitoring / triggering alarms
 - Automating actions

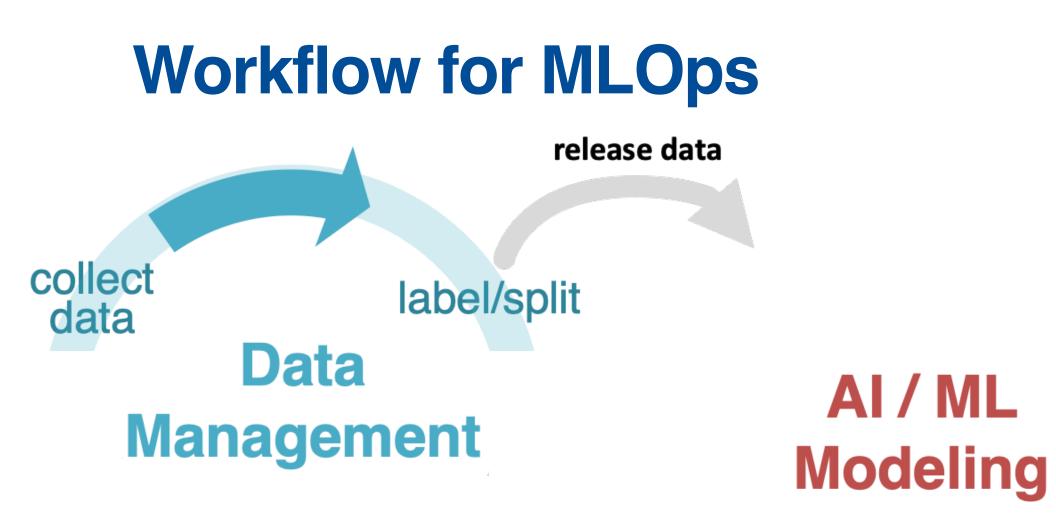
Data Management

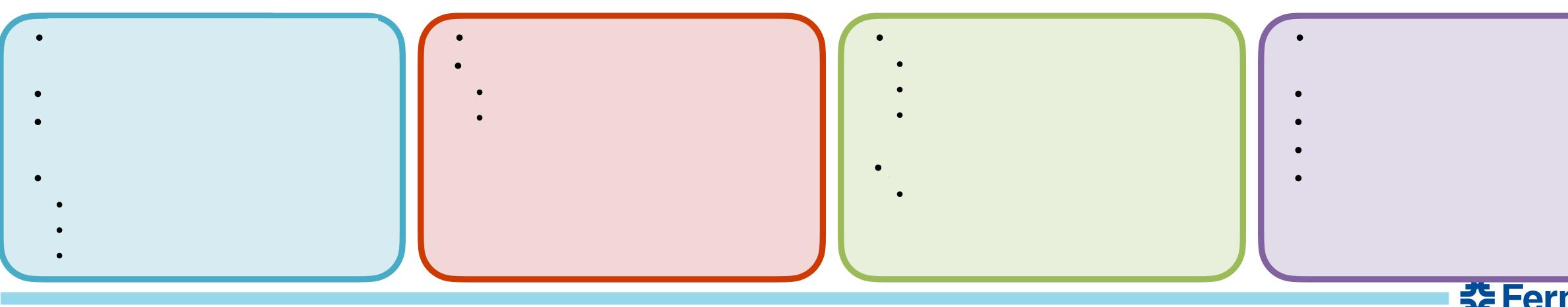
AI/ML Modeling



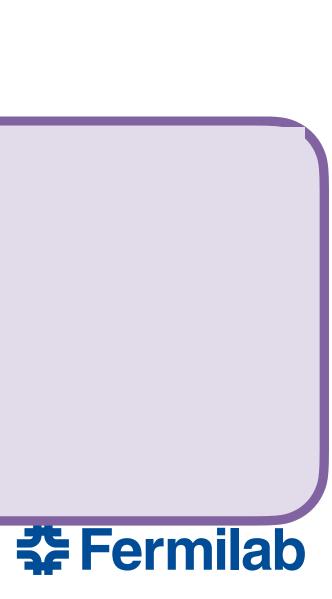
Operations **Development**

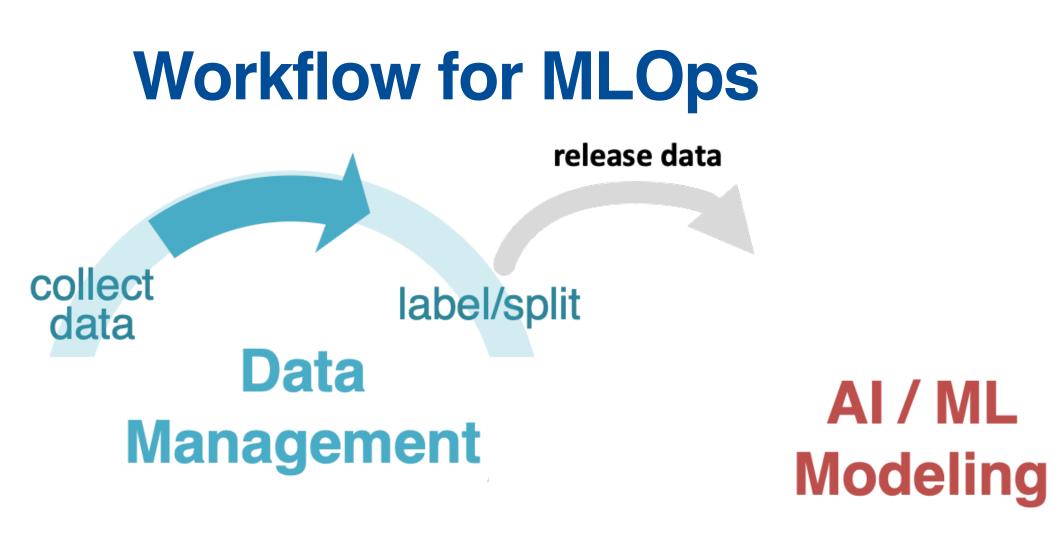






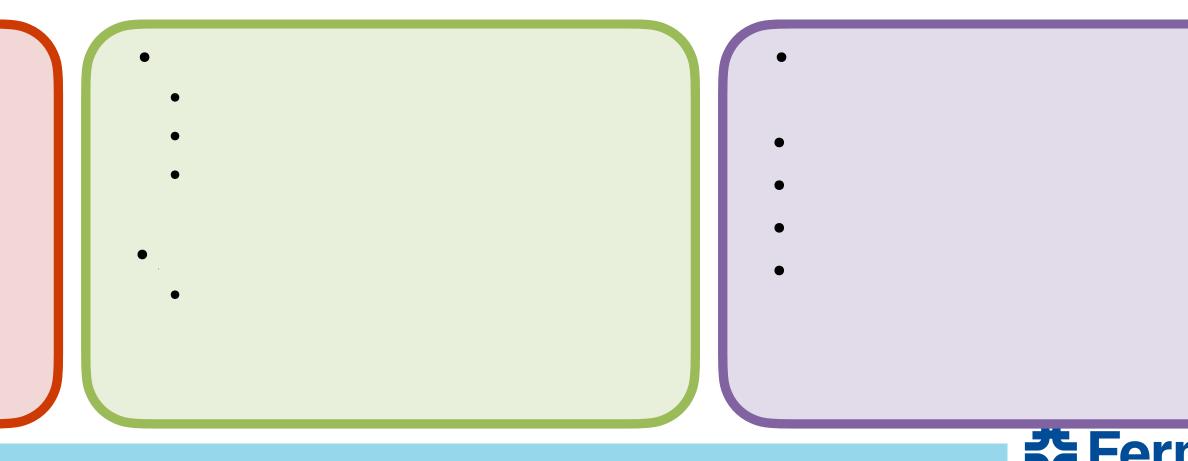
Operations Development

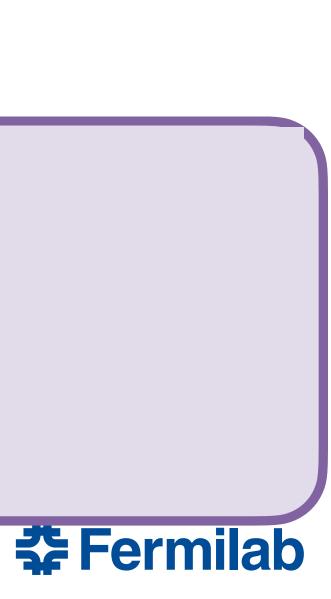


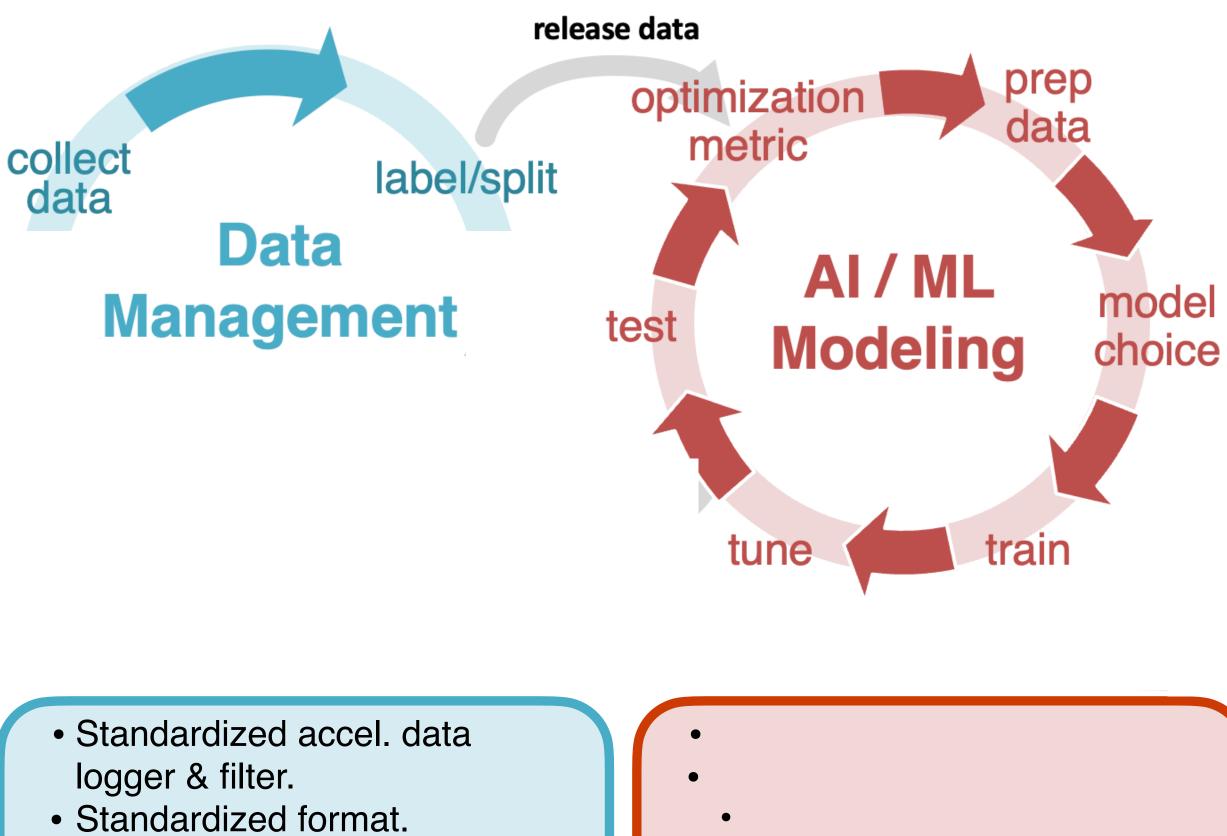


- Standardized accel. data logger & filter.
- Standardized format.
- Interface for ML Engineer: data filter.
- Dataset Management System
 - Versioning
 - Track derivative datasets
 - Metadata

Operations Development

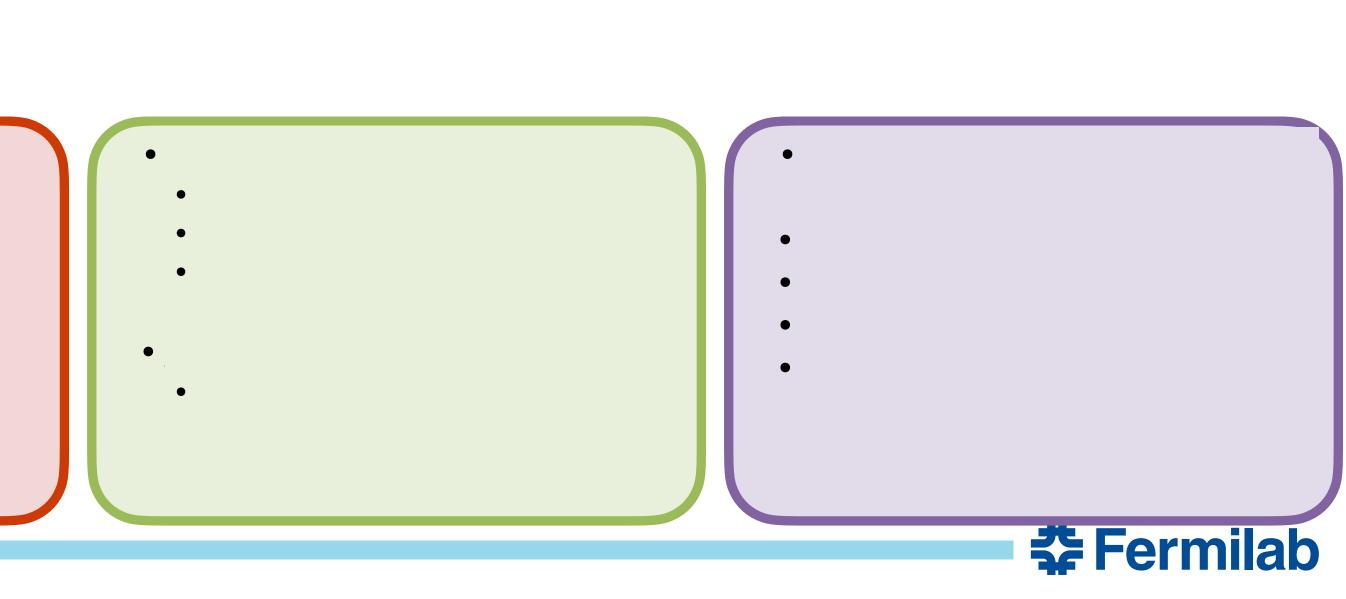


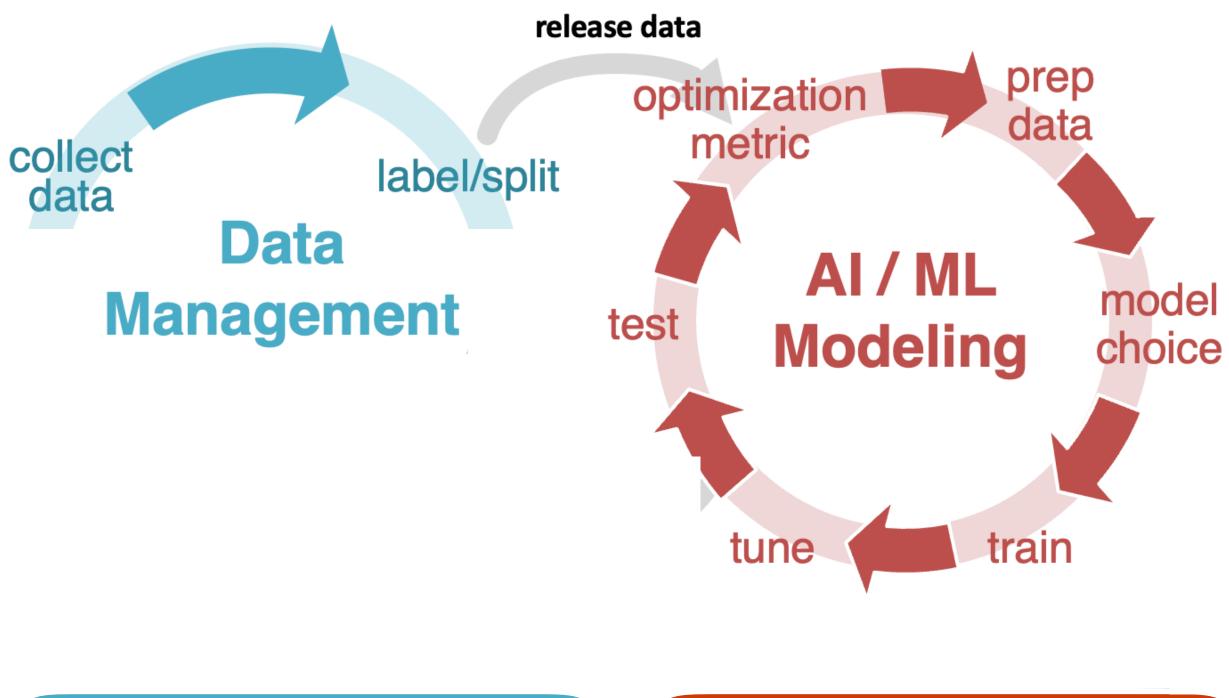




- Interface for ML Engineer: data filter.
- Dataset Management System
 - Versioning
 - Track derivative datasets
 - Metadata
- Tia Miceli I Machine Learning Operations for Accelerator Control 04/24/2023

Operations Development

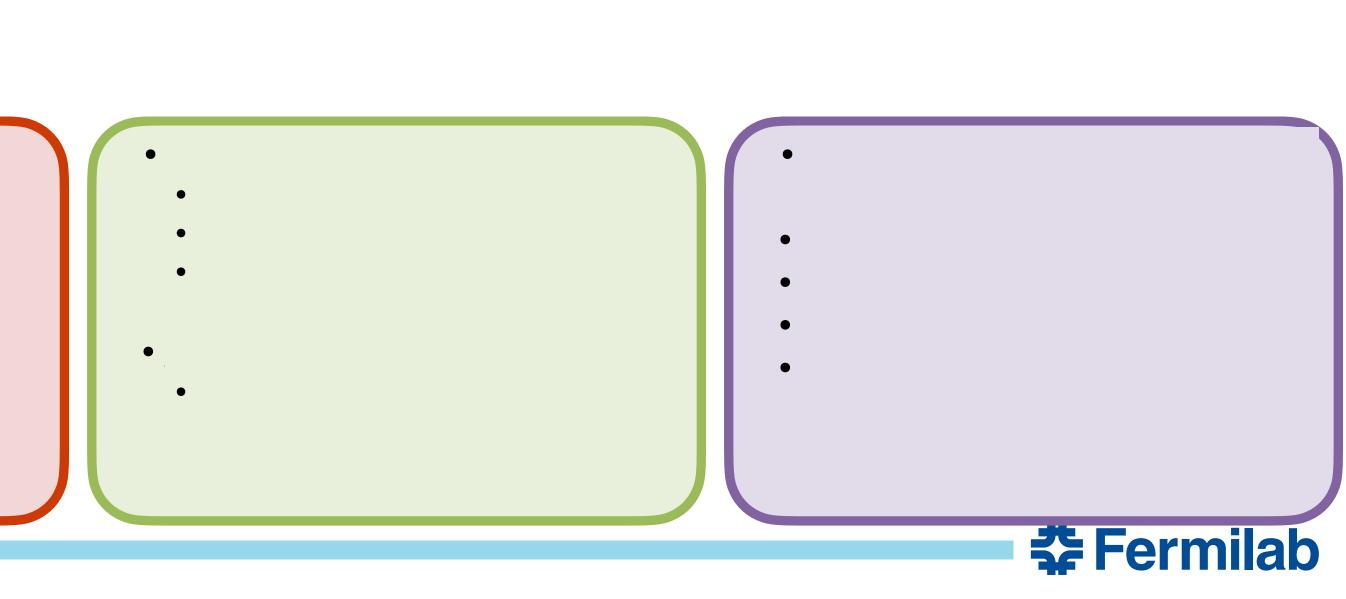


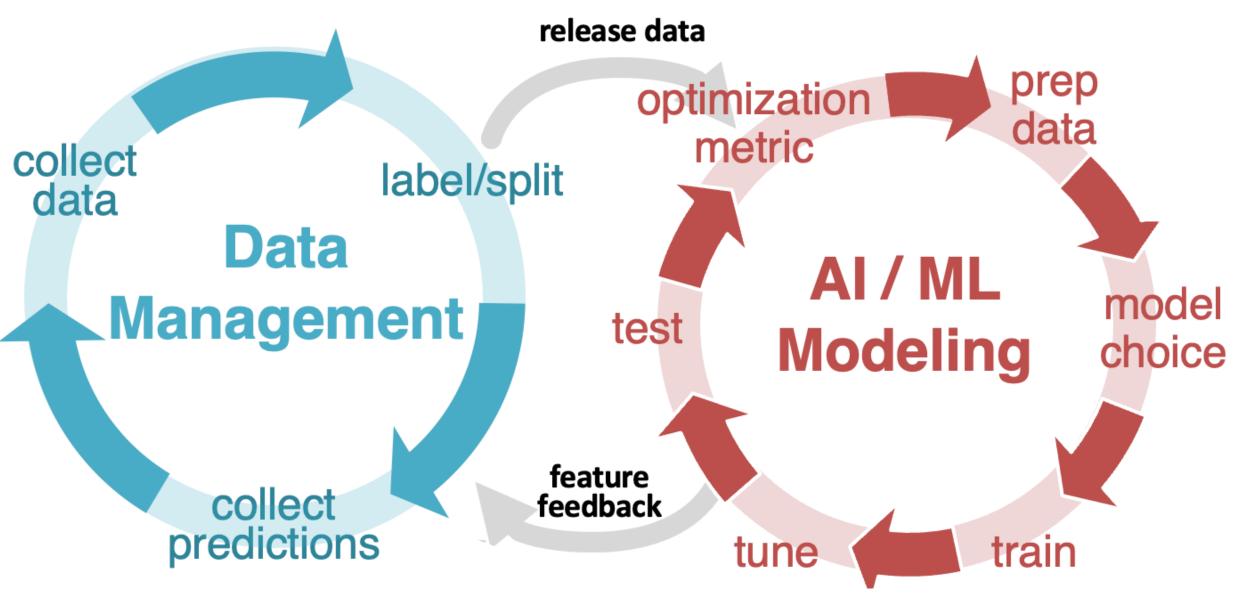


- Standardized accel. data logger & filter.
- Standardized format.
- Interface for ML Engineer: data filter.
- Dataset Management System
 - Versioning
 - Track derivative datasets
 - Metadata

- Use Common Tools
- Model Development System
 - ~MLFlow / hyper p. tune
 - VC: model with references to env., data, results

Operations **Development**

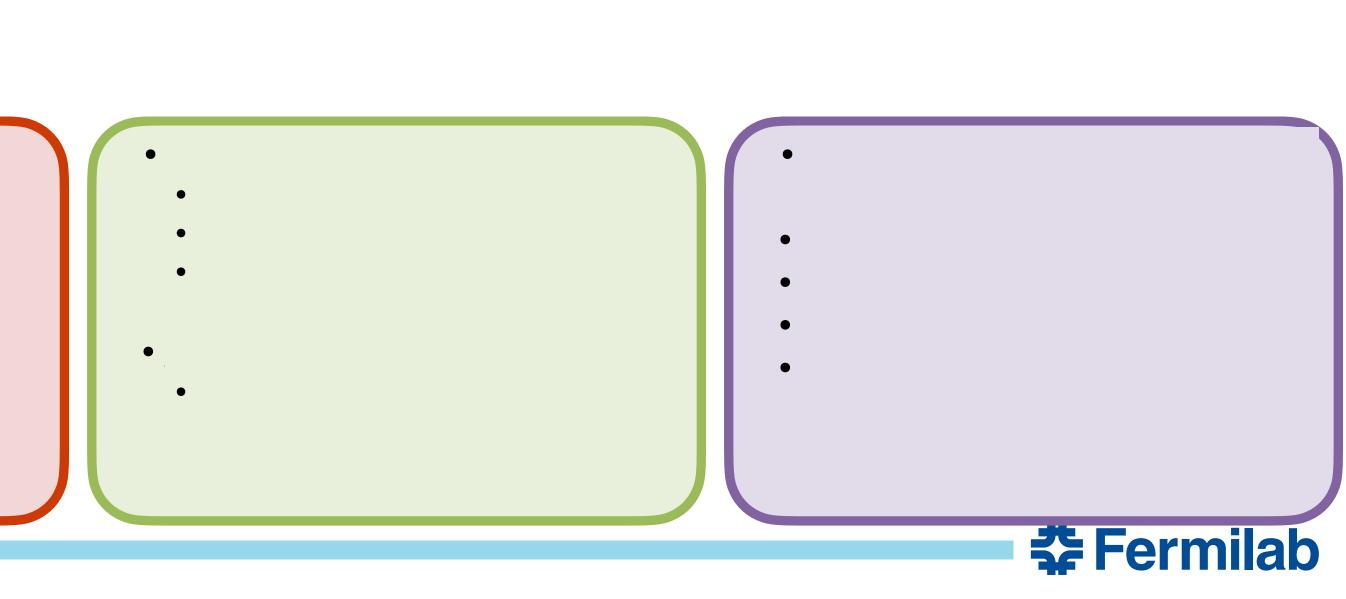


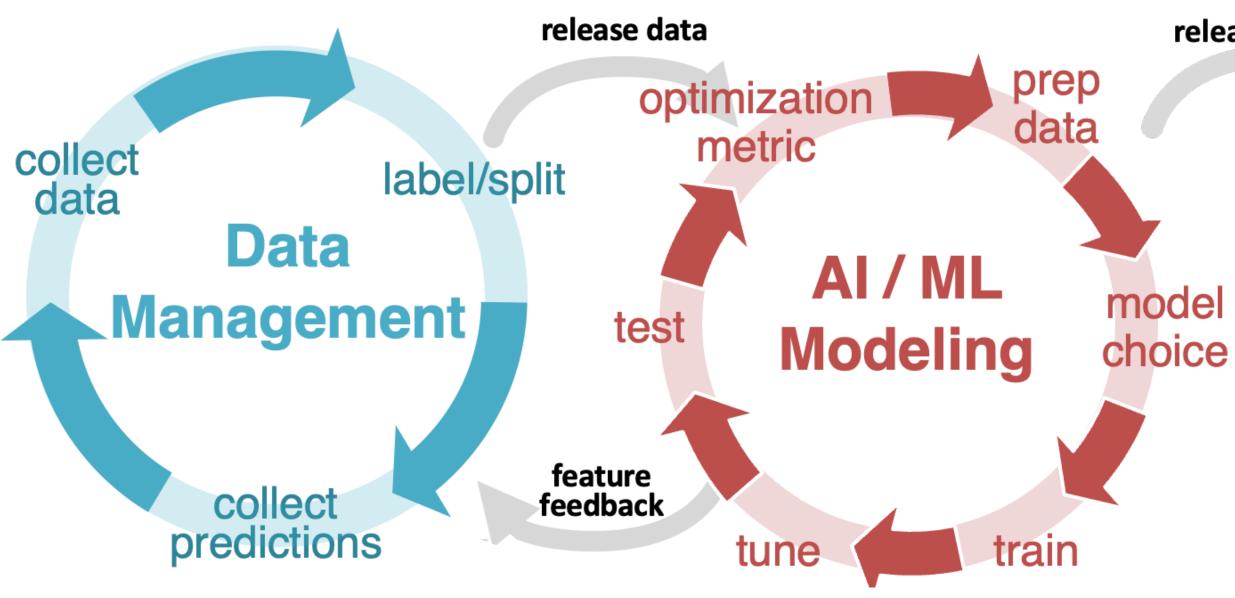


- Standardized accel. data logger & filter.
- Standardized format.
- Interface for ML Engineer: data filter.
- Dataset Management System
 - Versioning
 - Track derivative datasets
 - Metadata

- Use Common Tools
- Model Development System
 - ~MLFlow / hyper p. tune
 - VC: model with references to env., data, results

Operations **Development**



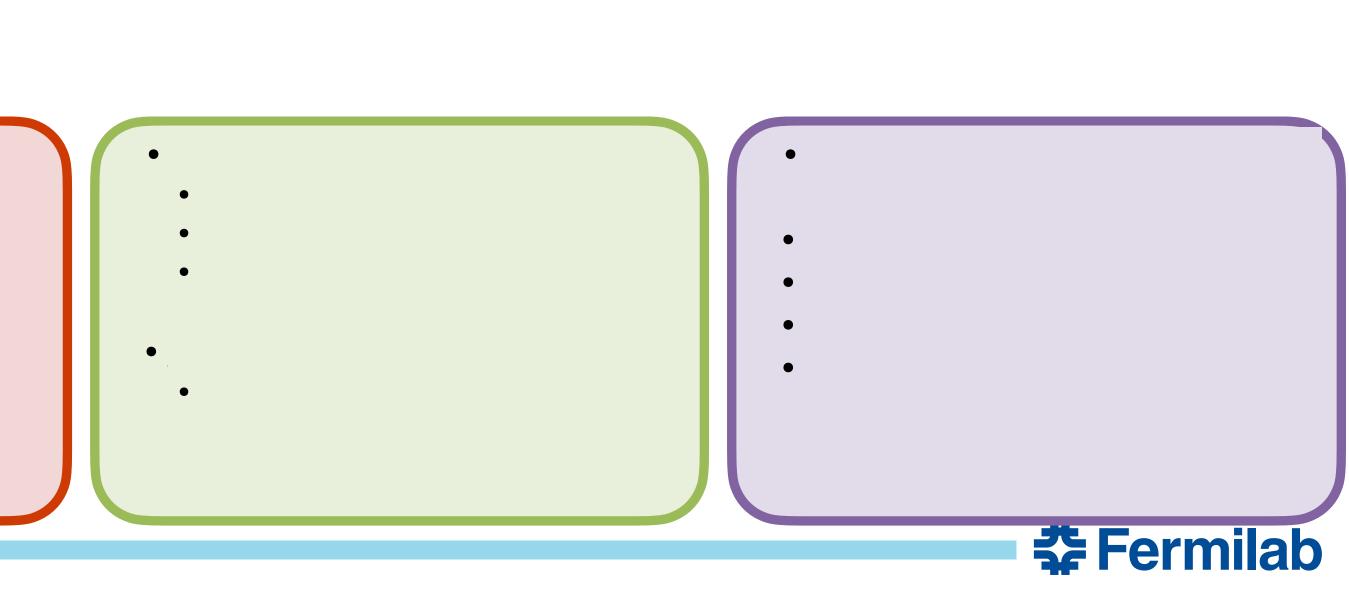


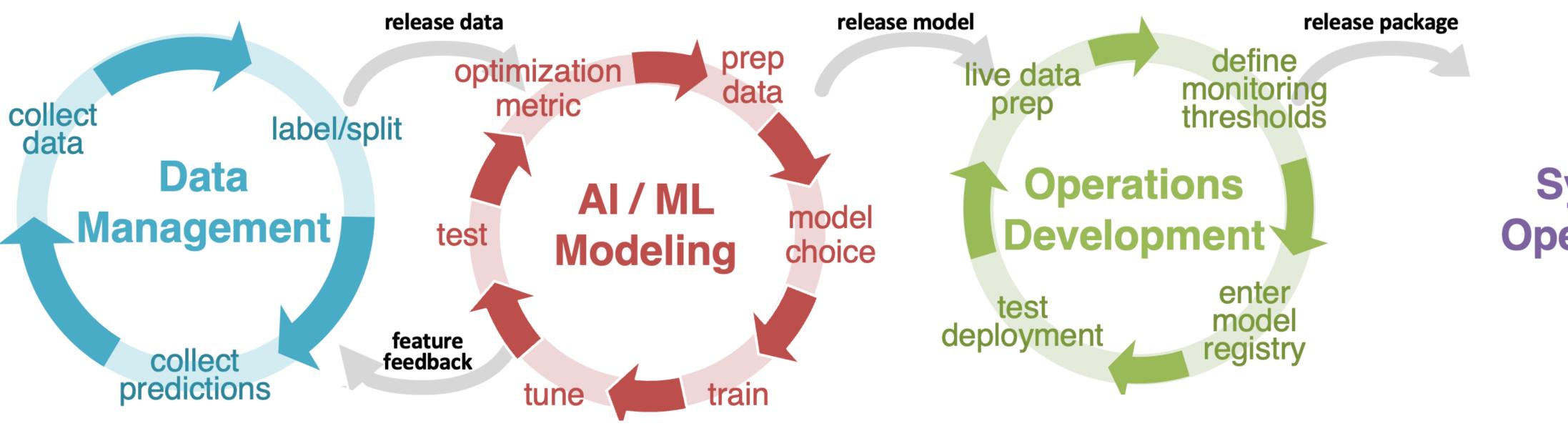
- Standardized accel. data logger & filter.
- Standardized format.
- Interface for ML Engineer: data filter.
- Dataset Management System
 - Versioning
 - Track derivative datasets
 - Metadata

- Use Common Tools
- Model Development System
 - ~MLFlow / hyper p. tune
 - VC: model with references to env., data, results

release model

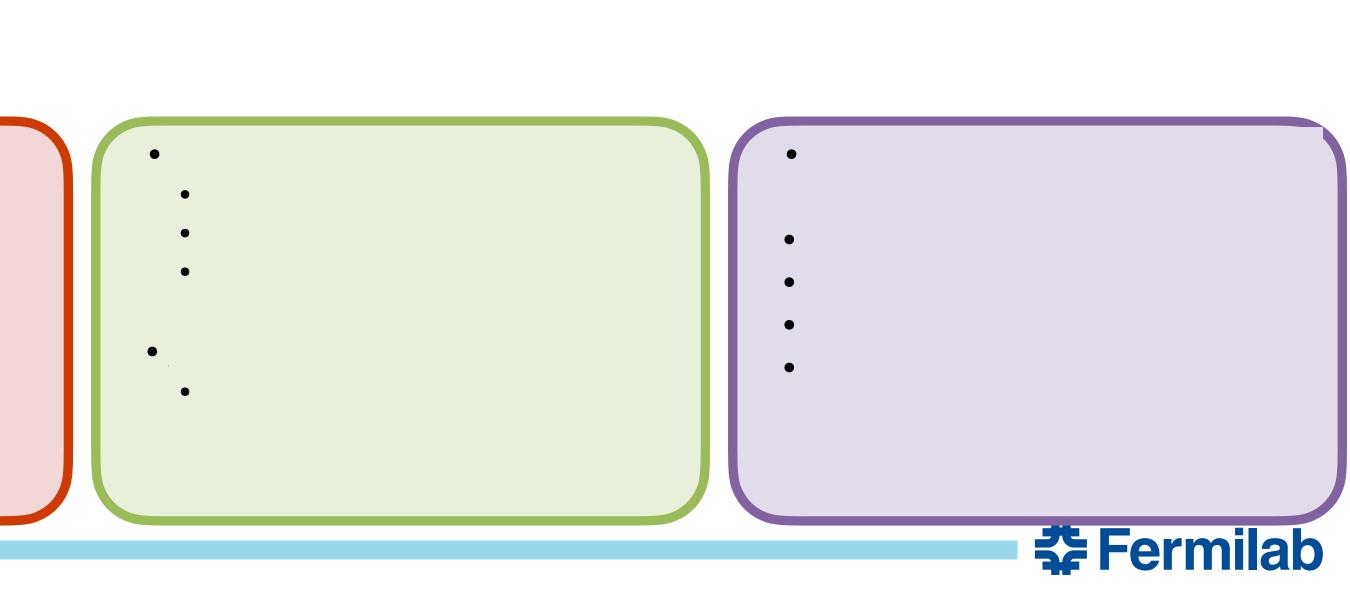
Operations **Development**

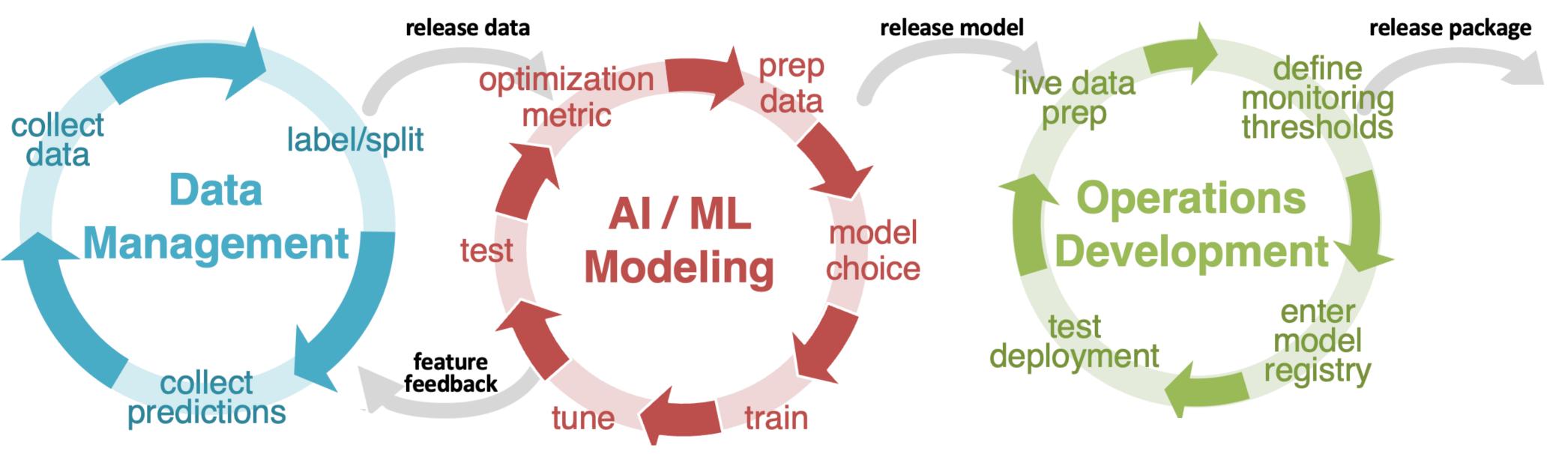




- Standardized accel. data logger & filter.
- Standardized format.
- Interface for ML Engineer: data filter.
- Dataset Management System
 - Versioning
 - Track derivative datasets
 - Metadata

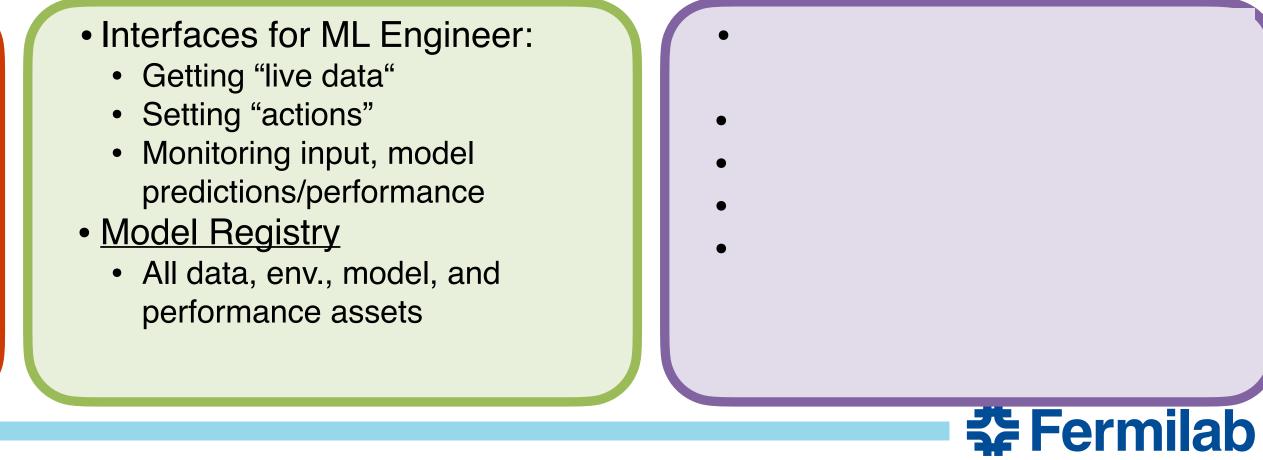
- Use Common Tools
- Model Development System
 - ~MLFlow / hyper p. tune
 - VC: model with references to env., data, results



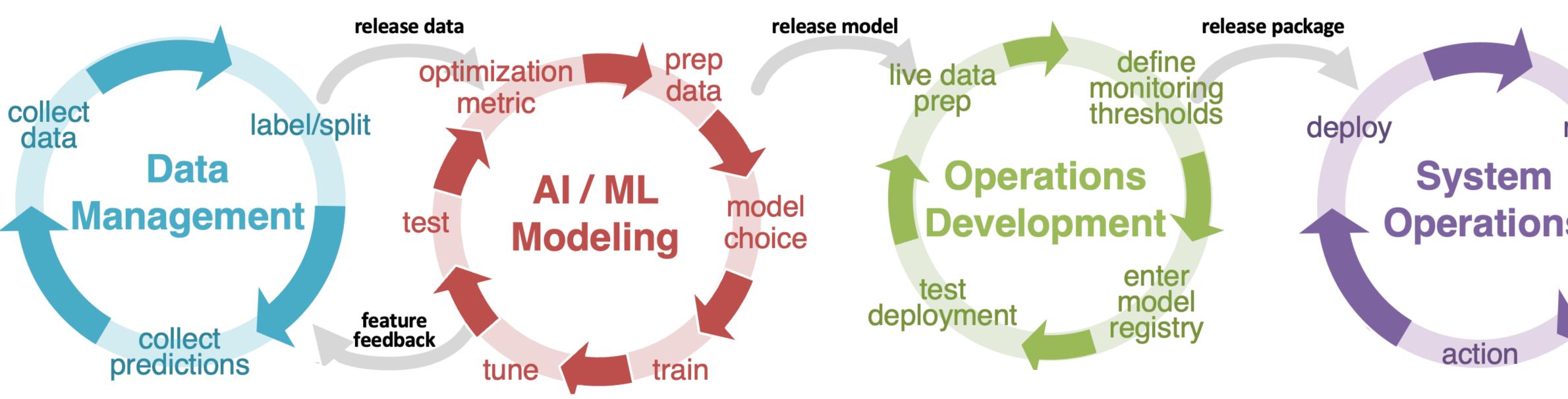


- Standardized accel. data logger & filter.
- Standardized format.
- Interface for ML Engineer: data filter.
- Dataset Management System
 - Versioning
 - Track derivative datasets
 - Metadata

- Use Common Tools
- Model Development System
 - ~MLFlow / hyper p. tune
 - VC: model with references to env., data, results

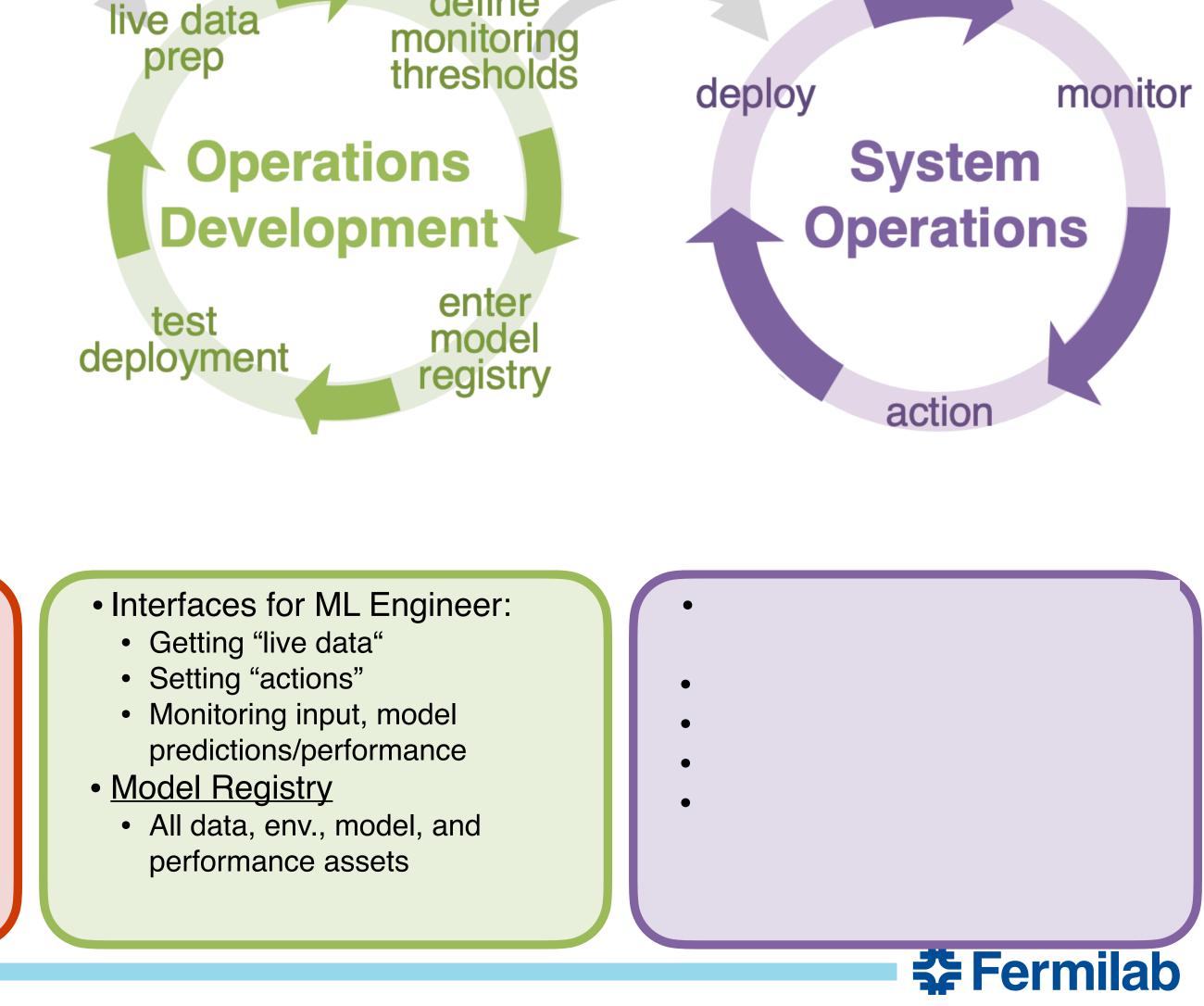


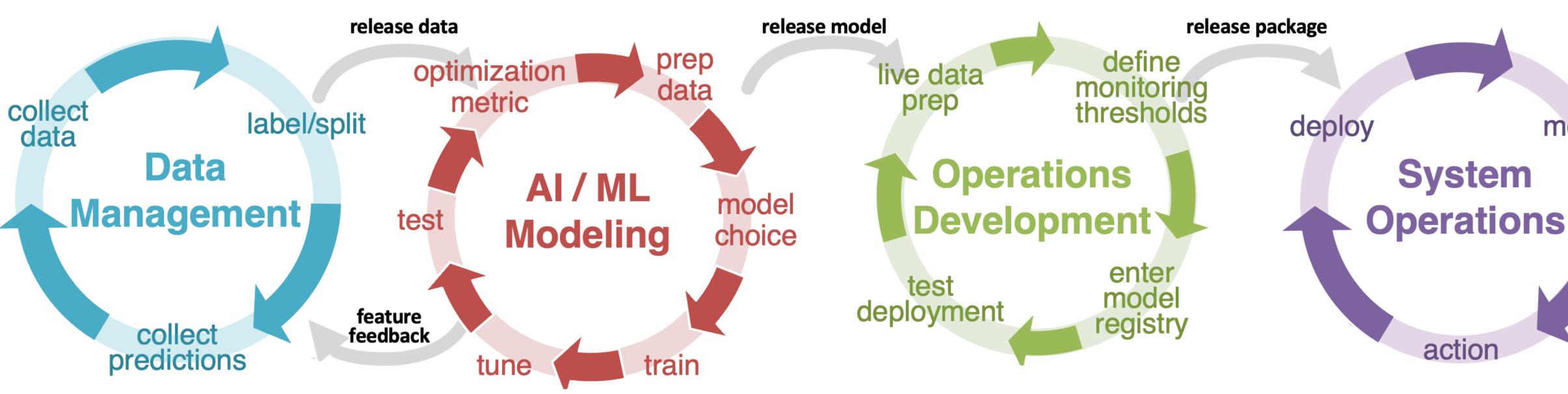




- Standardized accel. data logger & filter.
- Standardized format.
- Interface for ML Engineer: data filter.
- Dataset Management System
 - Versioning
 - Track derivative datasets
 - Metadata

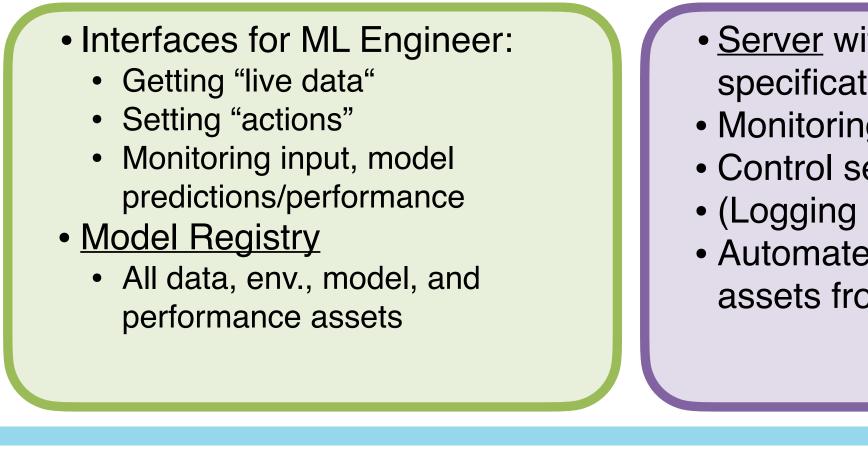
- Use Common Tools
- Model Development System
 - ~MLFlow / hyper p. tune
 - VC: model with references to env., data, results





- Standardized accel. data logger & filter.
- Standardized format.
- Interface for ML Engineer: data filter.
- Dataset Management System
 - Versioning
 - Track derivative datasets
 - Metadata

- Use Common Tools
- Model Development System
 - ~MLFlow / hyper p. tune
 - VC: model with references to env., data, results



- <u>Server</u> with proper specifications
- Monitoring services
- Control services
- (Logging services)
- Automate deployment of model assets from Model Registry

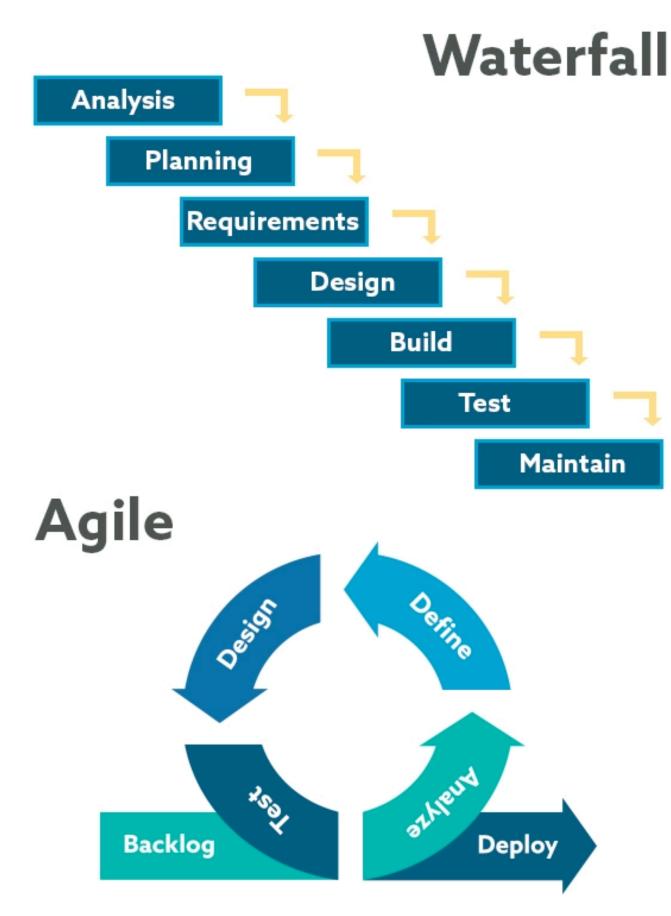


Automate as needed!

MLOps is an expansion of DevOps

- MLOps = Machine Learning Operations
 - Play on DevOps: Development Operations
 - Integrate and streamline the development of software and its deployment
 - "Agile" software development practices
 - Continuous Integration / Continuous Delivery (CI/CD)
 - Modern code version control
 - Enforce strict permissions on merging
 - Enforce appropriate sized end-to-end tests
- Fun Fact: DevOps has roots from Lean Manufacturing practices ;)

Software Product Development Models



Infrastructure required for accelerator controls MLOps

Data Management

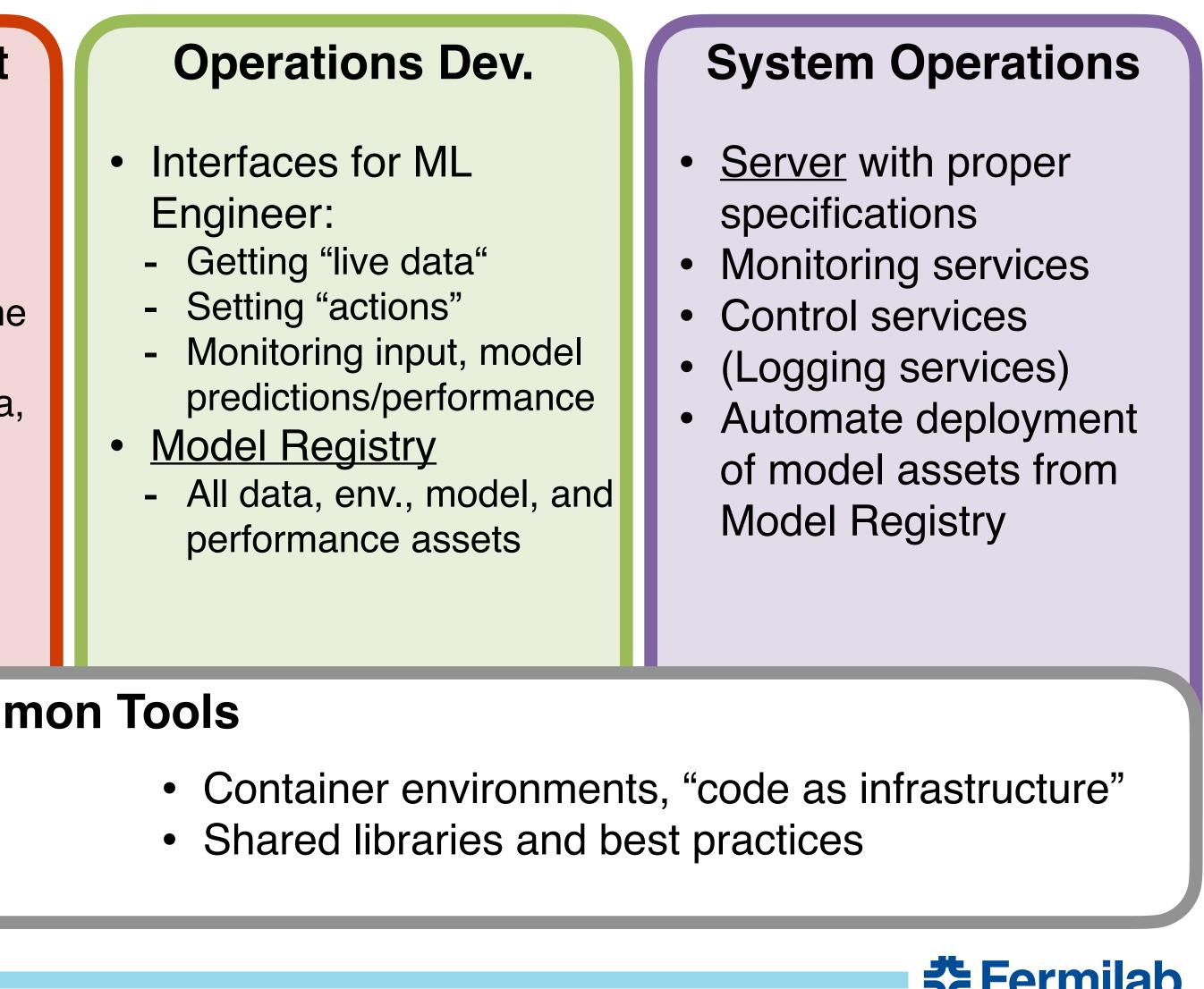
- Standardized accel. data logger & filter.
- Standardized format.
- Interface for ML Engineer: data filter.
- Dataset Management <u>System</u>
 - Versioning
 - Track derivative datasets
 - Metadata

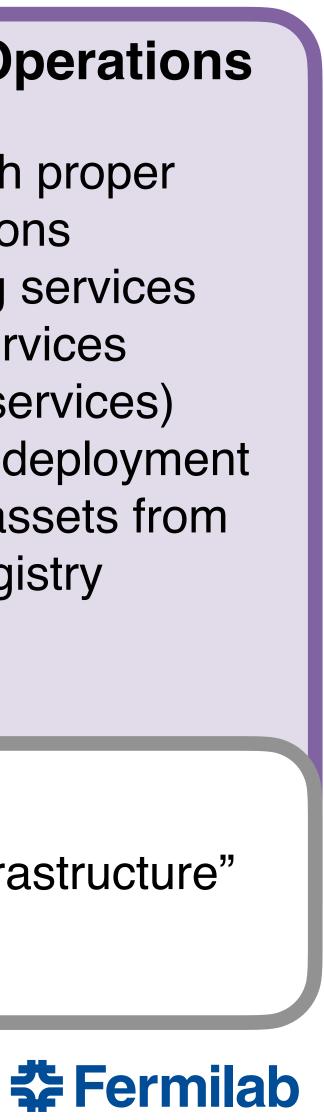
Model Development

- Use Common Tools
- Model Development <u>System</u>
 - ~MLFlow / hyper p. tune
 - VC: model with references to env., data, results

Common Tools

- Advanced version control (strict permissions, integration tests, access to GPU if needed)
- Shared compute CPU & GPU





Fermilab is building out our accelerator controls MLOps

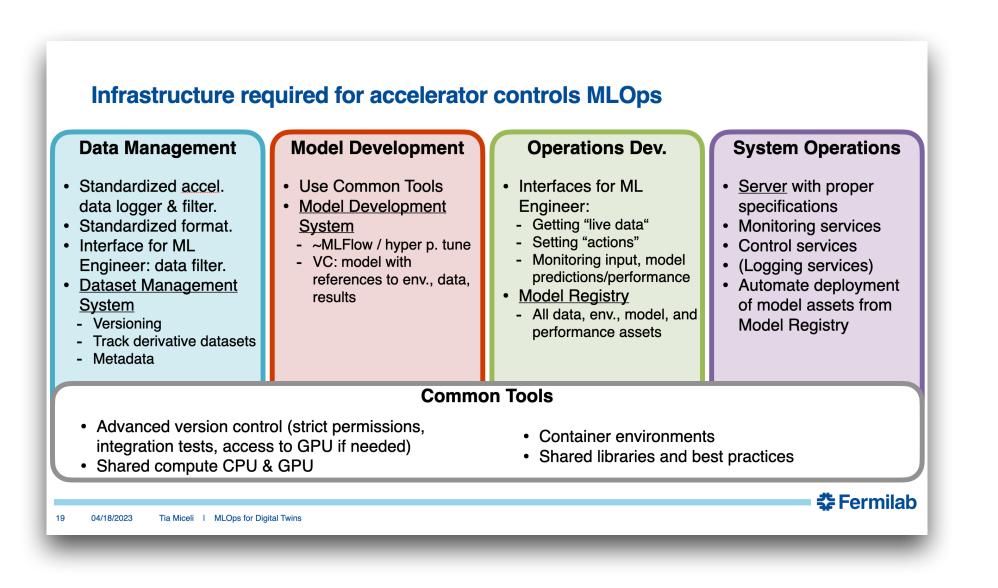
 Formalizing requirements for integration with <u>current system</u> & our modernized control system (ACORN 2020-2029)

Interviewing other accelerator laboratories

- Collab with SLAC on LUME-Services
- Discussions with CERN
- Discussions with BNL
- Contacts at ORNL, ANL, please reach out!

Open source Toolset R&D on Kubernetes cluster

- Data management tools: Data lake, GraphQL, metadata database (PNNL DataHub, FNAL RUCIO, LinkedIn DataHub, Invenio)
- Model development tools: MLFlow, DVC
- Workflow tools: Airflow
- Monitoring & control services: EPICS



★Learned from presentation yesterday that we will consult with Tech Transfer Office about licensing!

Crowd-sourcing for the best solutions!

- Fermilab Accelerator Controls AI/ML Group is designing our MLOps infrastructure.
- I want to hear about your workflows
 - What worked?
 - What didn't?

Tia Miceli, Fermilab Accelerator AI/ML Group Lead a.k.a. "Top Cat Herder in the Midwest!"

miceli@fnal.gov

5 – 8 March 2024 Gyeongju, Republic of Korea www.indico.kr/e/ml2024/

4th ICFA Beam Dynamics Mini-Workshop on **Machine Learning Applications for Particle Accelerators**

사진제공(권미정) - 경주시 관광자원 영상이미지

