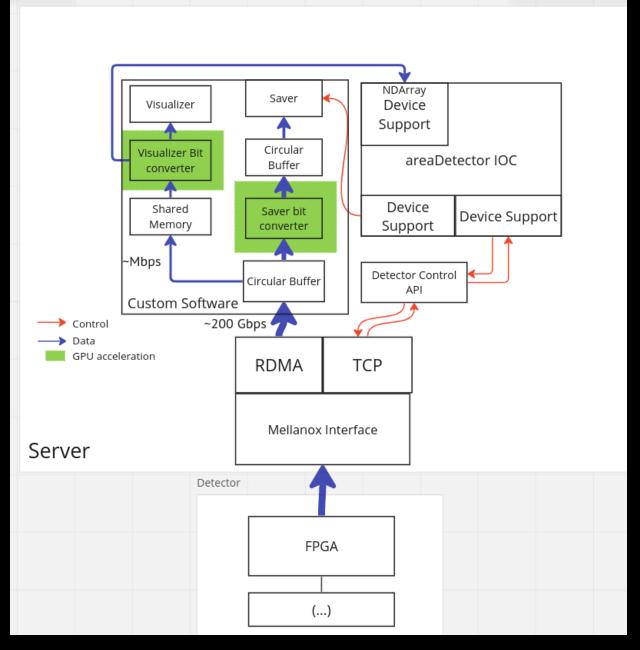
areaDetector Challenges and Perspectives for Sirius High-Throughput Detectors

Marco Montevechi Filho

EPICS Collaboration Meeting April 2023

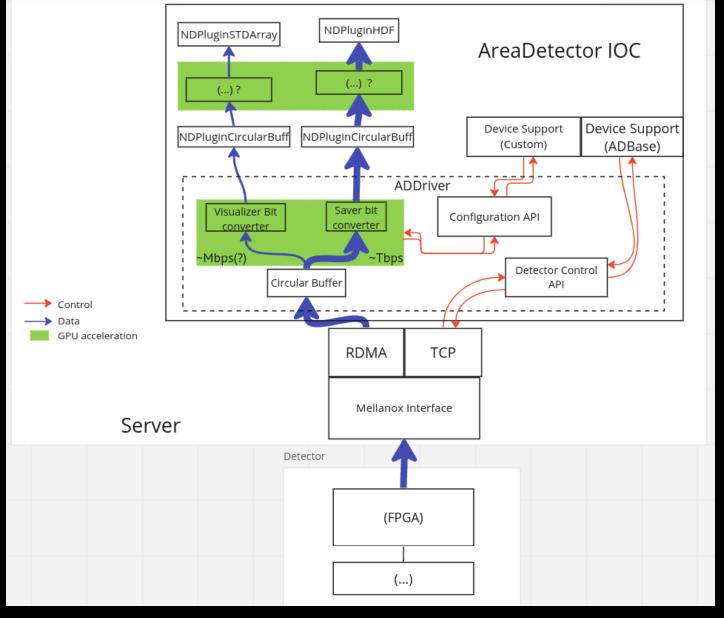
What we have/What we want

- In-house detector development currently deployed at 5 beamlines
- Control software architecture integrated with EPICS
- Detector data acquisition architecture partially/completely integrated with EPICS



				Timepix3 (2013)	Timepix4 (2019)
Technology				130nm – 8 metal	65nm – 10 metal
Pixel Size				55 x 55 μm	55 x 55 μm
Pixel arrangement				3-side buttable 256 x 256	4-side buttable 512 x 448
Sensitive area				1.98 cm ²	6.94 cm ²
	Data driven (Tracking)	Mode		TOT and TOA	
les		Event Packet		48-bit	64-bit
Noc		Max rate		0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm ² /s
Ħ		Max Pix rate		1.3 KHz/pixel	10.8 KHz/pixel
Readout Modes	Frame based (Imaging)	Mode		PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bit)
Rei		Frame		Zero-suppressed (with pixel addr)	Full Frame (without pixel addr)
		Max count	trate	~0.82 x 10 ⁹ hits/mm ² /s	~5 x 10 ⁹ hits/mm ² /s
TOT energy resolution				< 2KeV	< 1Kev
TOA binning resolution				1.56ns	195ps
TOA dynamic range				409.6 μs (14-bits @ 40MHz)	1.6384 ms (16-bits @ 40MHz)
Readout bandwidth				≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbps)
Target global minimum threshold			old	<500 e ⁻ Detector	<500 e ⁻

- Current implementations deal with 210 Gbps
- Future detectors can require up to ~1.8 Tbps


What we have

- Software architecture decoupled from areaDetector
- Data pipeline is defined at compile time
- No customizable metadata
- Implementation not modularized (monolithic)
- Can choose between with/without hardware acceleration (GPUs)

What we want

- Use areaDetector resources as much as possible
- Reconfigurable data pipeline
- Customizable metadata, ROIs, etc.
- Modularized implementation
- Integrated hardware acceleration

Final questions:

- 1. Does the proposed architecture make proper use of areaDetector or are we abusing it? Is it meant for high-throughput?
- 2. Hardware acceleration options: should we develop new plugins/drivers or extend existing ones?
- 3. Are there plugins/drivers that already use hardware acceleration?
- 4. Are there ongoing efforts to develop such hardware acceleration capabilities? If yes, how could we team up on this?

Thanks!

- Marco Montevechi Filho (Control Software Developer): marco.filho@lnls.br
- Érico Rolim (Control Software Developer): erico.rolim@lnls.br
- Eduardo Pereira Coelho (Control Software Group Leader): eduardo.coelho@lnls.br
- Jean Marie Polli (Detectors Group Leader): jean.polli@lnls.br
- Daniel Tavares (Head of the Data Acquisition and Processing Division): daniel.tavares@lnls.br

