

Study of The Dijet Mass Spectrum in pp \rightarrow W(\rightarrow lv)+jj Final States And Search For an Anomalous Resonance Near 150 GeV in CMS

Osipenkov, Ilya (Texas A&M University)
On behalf of the CMS Collaboration

USLUO Meeting

arXiv:1208.3477v1 [hep-ex]

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEWK11017

Motivation: CDF-Resonance

- CDF: an excess of 253 events at 145 GeV, width = 15 GeV
- Significance of 3.2 σ at 4.3fb⁻¹ and 4.1 σ at 7.3fb⁻¹
- **News Coverage:**
 - NBC: New subatomic particle: real or anomaly?
 - NY Times: At Particle Lab, a Tantalizing Glimpse Has Physicists Holding Their Breaths
 - Science News: Fermilab data hint at possible new particle
 - ...

- > D0: Smooth falling spectrum beyond 110GeV
- Consistent with the Standard Model
- > News:
 - Discovery News: Tevatron's DZero Sees No Evidence of New Particle
 - Science News: No new particle from second detector
 - NBC: Subatomic mystery leads to standoff

> Up to LHC to address the discrepancy

New Physics & Challenges at The LHC

- We consider proposed theoretical explanations:
 - **>** Leptophobic Z' (m_z≈150GeV)
 - Fraction Technicolor ($\rho_T \rightarrow W \pi_T$, $m_{\pi T} \approx 150 GeV$)
 - Can serve as proxies for other theories

Z' Resonance

W+jj production via quark-gluon scattering

- > The W+jj production is dominated by quark-gluon scattering (vs. q-q at the Tevatron)
- The potential New Physics can be (and in many theories is) dominated by quark-quark collisions
- The Signal to Background ratio is much worse: stronger cuts and improved techniques are needed

CMS Selection

- \triangleright We study pp \rightarrow W(\rightarrow lv)jj final states at 7TeV
- > Apply standard object selection
 - μ , e, MET, two or three PF Jets
 - Cuts on the corresponding values p_T , $|\eta|$, W_{mT} , etc.
- **Additional quality Cuts:**
 - Designed to enhance S/B and avoid removing potential New Physics
 - Leading Jet $p_T>40 GeV$, $p_T^{ij}>45 GeV$, $|\Delta\eta_{ij}|<1.2$, 0.3<Jet2 $p_T/m_{ij}<0.7$

Fitting The M_{ii} Spectrum

- Unbinned maximum likelihood for $40 < M_{ij} < 400 \text{ GeV}$
- Exclude the potential signal region: $123 < M_{ii} < 186 \text{ GeV}$
- Four Distinct Fits: μ_{2J} , μ_{3J} , e_{2J} and e_{3J} Bins (combine the results when setting exclusion limits) **Backgrounds**
 - The (non W+jets) background contributions are free to float subject to Gaussian constraints.

Process	Shape	External constraint on normalization
W plus jets	MC/data	Unconstrained
Diboson	MC	Constrained: (NLO) 61.2 pb \pm 10%
tŧ	MC	Constrained: (NLO) 163 pb \pm 7%
Single top	MC	Constrained: (NNLO) [25–27] \pm 5%
Drell-Yan plus jets	MC	Constrained: (NLO, $m_{ll} > 50$ GeV) 3048 pb $\pm 4.3\%$
Multijet	data	Constrained: \not _T fit in data \pm 50% (100%) for electron (muon)

- ***** W+jets shape is a combination of:
 - **▶** Default (MADGRAPH) MC
 - \triangleright Either Matrix Element Parton Shower Matching Up (μ =2 μ ₀) or Matching Down (μ =0.5 μ ₀) MC
 - Either Factorization Scale Up $(q'=2q_0)$ or Scale Down $(q'=0.5q_0)$ MC
- **The choice of Up or Down Sample is based on the best fit to the Data**
- \star The relative fractions (α,β) and the overall normalization are free to vary in the fit (empirical model):

$$\mathcal{F}_{\text{W+jets}} = \alpha \cdot \mathcal{F}_{\text{W+jets}}(\mu_0^2, q'^2) + \beta \cdot \mathcal{F}_{\text{W+jets}}(\mu'^2, q_0^2) + (1 - \alpha - \beta) \cdot \mathcal{F}_{\text{W+jets}}(\mu_0^2, q_0^2)$$

Fit Output

Systematics

- ➤ Mjj distribution shape uncertainty for W+jets is covered by the empirical model
- > We validate the fitter by performing pseudo-experiments (with correlations taken into account) and correct the yields (errors) based on the resulting (pull) distributions. The procedure also covers the uncertainty due to limited MC.
- ➤ Uncertainties due to JES, JER, MET resolution, trigger efficiency, lepton reconstruction & selection efficiency and luminosity are subsequently included.

Results

CL_S statistic for a generic Gaussian signal hypothesis

New Physics Exclusion Limits

- The analysis produces a high quality model of the data, where the pull distribution consistent with 0, and allows us to extract the diboson peak.
- We observe no resonant enhancement and set an upper limit of 5pb at 95% CL on the dijet production cross-section.
- Conservatively, assume the new-physics is generated via qgbar annihilation.
- σ=4pb at the Tevatron corresponds to 16.7pb at the LHC (estimated using WH production with $M_H=150GeV$).
- Two theoretical models that predict a dijet resonance near 150 GeV are excluded at 95% CL.

Submitted To PRL: arXiv:1208.3477v1 [hep-ex]

Public Page: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEWK11017

CMS: EWK-11-017/AN-11-266/AN-11-484

References

- > CDF Search arXiv: 1101.6079, Phys. Rev. Lett. 106:171801 (2011)
- > D0 Search arXiv: 1106.1921, Phys. Rev. Lett. 107:011804 (2011)
- > In The News:
 - NBC: New subatomic particle: real or anomaly? http://www.msnbc.msn.com/id/42497555/ns/technology and science-science/t/new-subatomic-particle-real-or-anomaly
 - Science News: Fermilab data hint at possible new particle http://www.sciencenews.org/view/generic/id/72302/title/Fermilab_data_hint_at_possible_new_particle
 - NY Times: At Particle Lab, a Tantalizing Glimpse Has Physicists Holding Their Breaths http://www.nytimes.com/2011/04/06/science/06particle.html?_r=0
 - Science News: No new particle from second detector http://www.sciencenews.org/view/generic/id/331050/title/No_new_particle_from_second_detector
 - Discovery News: Tevatron's DZero Sees No Evidence of New Particle http://news.discovery.com/space/dzero-puts-the-brakes-on-possible-new-particle-110610.html
 - NBC: Subatomic mystery leads to standoff http://cosmiclog.nbcnews.com/_news/2011/06/10/6831067-subatomic-mystery-leads-to-standoff
- > Technicolor E. J. Eichten, K. Lane, and A. Martin, "Technicolor Explanation for the CDF Wjj Excess", 191 Phys. Rev. Lett. 106 (Jun, 2011) 251803.
- ➤ Leptophobic Z' M. R. Buckley, D. Hooper, J. Kopp et al., "Light Z' Bosons at the Tevatron", Phys. Rev. D 193 83 (2011) 115013, arXiv:1103.6035.

Backup

ATLAS Search

> Presented at EPS : ATLAS-CONF-2011-097 (1.02fb⁻¹)

❖ "The measured dijet mass spectrum shows no significant excess over the Standard Model expectation"