

Cross-Section Measurement of $Z(\nu\nu)\gamma$ in the ATLAS Detector

Benjamin Auerbach (Argonne National Laboratory)

Why Bother?

- It has been used as a background for exotic photon + met analyses
 - but (!) Hadn't been measured at ATLAS before
- If we can collect a pure sample Z(vv)y events can help constrain limits on aTGC more than Z(ll)y
- Hints from previous Z(II)γ and W(Iv)γ analysis looked intriguing

Data Sample and Kinematic Cuts

- Used full 7 TeV dataset = 4.64/fb
- Lowest energy, non-prescaled single photon trigger:
 - photon with ET > 80 GeV
- Photon Cut: ET > 100 GeV
 - Chosen to be consistent with Wy and Z(II)y aTGC limit studies
- Exactly 0 electrons, and exactly 0 tight muons
- Require Missing ET > 90 GeV

Two Largest SM backgrounds:

- W(ev): electron is misidentified as a photon
- W(Iv)y: do not detect the charged lepton
- $Z(\nu\nu)$ +jets: jet -> photon

Performed two simultaneous measurements:

Requiring exactly 0 jets (exclusive), and any vmber of jets (inclusive)

Measuring the W(ev) background

- Know that electrons can and do fake photons
- Get a handle on this looking for Z(ee) events reconstructed as Z(ey)
- Need at least one electron or the photon to have ET > 100 GeV
- Use two regions for the higher ET object |eta| < 1.37 and 1.52 < |eta| < 2.47

Jets misidentified as photons

- Can construct a 2-D grid:
- tight and (loose and !tight) and isolation energies
- Assessing the amount of Z(vv)
 +jets -> photon + MET
- Can calculate the amount in A = B*C/D * correlation
- correlation factor comes from Z(vv)+jets MC
- A,B,C, and D corrected from SM processes with real photons
 - γ+jets, Wγ, Z(II)γ, ...

This plot has nothing to do with photons!

Putting Everything Together in Tables

background	$pp ightarrow u ar{ u} \gamma$	$pp ightarrow u ar{ u} \gamma$
	$N_{jet} \geq 0$	$N_{jet}=0$
$N_{Z\gamma}^{ m obs}$	1094	662
$W \rightarrow e \nu$	$171\pm2\pm17$	$132\pm2\pm13$
$Z \rightarrow \nu \bar{\nu} + \text{jet}$	$70\pm13\pm14$	$29\pm5\pm3$
$W\gamma$	$273 \pm 14 \pm 18$	$133\pm10\pm11$
$\gamma + \text{jet}$	$140\pm18\pm26$	$19\pm7\pm11$
$Z(ightarrow au au)\gamma$	$11.7\pm0.7\pm0.9$	$6.5\pm0.6\pm0.6$
$tar{t}$	$11\pm1.2\pm1.0$	$0.9\pm0.6\pm0.1$
$N_{Z\gamma}^{ m sig}$	$417\pm33\pm39$	$342\pm23\pm21$

How does data compare to simulation?

Inclusive jets sample, very good agreement If there was aTGC we'd expect large contribution at high photon ET... so we set limits

Measured cross sections in fiducial phase space

- Zy measurements are all consistent with MCFM predictions
- Wy measurements are still a bit higher than NLO predictions

	$\sigma^{ m ext-fid}[m pb]$	$\sigma^{ m ext-fid}[m pb]$	
	Measurement	MCFM Prediction	
	$N_{jet} \geq$	0	
$e\nu\gamma$	$2.70 \pm 0.12 \pm 0.33$	1.96 ± 0.17	
$\mu\nu\gamma$	$2.77 \pm 0.12 \pm 0.37$	1.96 ± 0.17	
luy	$2.74 \pm 0.09 \pm 0.34$	1.96 ± 0.17	
$e^+e^-\gamma$	$1.28 \pm 0.06 \pm 0.13$	1.18 ± 0.05	
$\mu^+\mu^-\gamma$	$1.30\pm0.05\pm0.11$	1.18 ± 0.05	
$l^+l^-\gamma$	$1.29 \pm 0.04 \pm 0.11$	1.18 ± 0.05	
$\nu\bar{\nu}\gamma$	$0.130\pm0.013\pm0.013$	0.156 ± 0.012	
	$N_{jet} = 0$		
$e\nu\gamma$	$1.75 \pm 0.11 \pm 0.23$	1.39 ± 0.13	
$\mu\nu\gamma$	$1.72 \pm 0.10 \pm 0.22$	1.39 ± 0.13	
luy	$1.73 \pm 0.07 \pm 0.21$	1.39 ± 0.13	
$e^+e^-\gamma$	$1.05 \pm 0.05 \pm 0.12$	1.06 ± 0.05	
$\mu^+\mu^-\gamma$	$1.03 \pm 0.04 \pm 0.10$	1.06 ± 0.05	
$l^+l^-\gamma$	$1.04 \pm 0.03 \pm 0.10$	1.06 ± 0.05	
$\nu \bar{\nu} \gamma$	$0.109 \pm 0.010 \pm 0.011$	0.115 ± 0.009	

Limit Setting on aTGC

	Measured	Expected	
processes	$pp \rightarrow \nu \nu \gamma \text{ and } pp \rightarrow l^+ l^- \gamma$		
Λ	∞	∞	
h_3^γ	(-0.015, 0.016)	(-0.017, 0.018)	
h_3^Z	(-0.013, 0.014)	(-0.015, 0.016)	
h_4^γ	(-0.000094, 0.000092)	(-0.00010, 0.00010)	
h_4^Z	(-0.000087, 0.000087)	(-0.000097, 0.000097)	
Λ	3 TeV	3 TeV	
h_3^{γ}	(-0.023, 0.024)	(-0.027, 0.028)	
h_3^Z	(-0.018, 0.020)	(-0.022, 0.024)	
h_4^{γ}	(-0.00037, 0.00036)	(-0.00043, 0.00042)	
$h_4^{ar{Z}}$	(-0.00031, 0.00031)	(-0.00037, 0.00036)	

anomalous triple gauge couplings 2-D limits

Unfolded W(lv) v cross sections

Conclusions

- Wy and Zy cross sections have been measured in both inclusive and exclusive jet multiplicity
- See very good agreement between Zγ and theoretical predictions
- Wy cross sections are measured to be a bit higher than MCFM predictions
- Have set strong limits on size of anomalous triple gauge couplings
- Improvements to selection and analysis have been identified