Search for Exotic WZ Resonances in CMS with 4.98 fb⁻¹ at 7 TeV

Cory Fantasia - Boston University

USLUO - 2012.10.20

WZ Resonances

- New WZ Resonances predicted by many extensions of the SM
 - Sequential Standard Model (SSM): W'
 - Technicolor: ρ_{TC}
 - Little Higgs
 - Extra Dimensions
- Some of these offer alternatives to the SM mechanism of EWSB
- Clean signature
 - 3 leptons + E_T^{Miss}
 - Able to reconstruct Z boson mass
 - Form W boson from remaining lepton and $E_T^{\it Miss}$
 - Search for bump in WZ mass distribution

$$\mathsf{WZ} \rightarrow \ell^{\pm} \nu \ell'^{+} \ell'^{-} (\ell, \ell' = e, \mu)$$

SSM W'

- Current best limit come from W' decays to leptons
- Exclude W' masses < 2.85 TeV @ 95% C.L. [CMS, CERN-PH-EP-2012-103]
 - Assumes SM as benchmark and that W'→WZ is suppressed
- W'→WZ search is complementary to this search
 - Important for fermiophobic W' models, etc
 - Previous published limits from D0 [D0, Phys. Rev. Lett. 104, 061801 (2010)]
 - Excludes W' masses between 188 GeV and 520 GeV for SSM W'→WZ

Technicolor

- A theory of dynamical breaking of electroweak symmetry
 - Introduces new strong dynamics a la QCD
- Technicolor problems with the S parameter can be naturally suppressed if the lightest ρ_{TC} and its axial vector partner, a_{TC} , are nearly degenerate
 - Phenomenology set forth in the "Technicolor Strawman Model" TCSM
 - Lightest ho_{TC} and ho_{TC} lie below 1 TeV and they decay to $~\gamma$, W, Z, π_{TC}
 - Channels have distinctive signatures since they are very narrow : Γ < 5 GeV

ρ_{TC} and a_{TC} merge and are indistinguishable after reconstruction

ρ_{TC} much narrowerthan W' atgenerator level

Technicolor

- Relationship of M(π_{TC}), M(ρ_{TC}) significantly affects BR($\rho_{TC} \rightarrow WZ$)
 - If M(ρ_{TC}) > 2 M(π_{TC}), WZ BR reduced ~10x
 - WZ BR ~100% if $M(\rho_{TC}) < M(\pi_{TC}) + M(W)$
 - $M(\pi_{TC}) = \frac{3}{4} M(\rho_{TC}) 25 GeV$
- Theoretically motivated by work with TC proponents
- Current published exclusion limit: 408 GeV
 - [D0, Phys. Rev. Lett. 104, 061801 (2010)]
 - For $M(\rho_{TC}) < M(\pi_{TC}) + M(W)$

Background Characteristics

- Physics Background
 - SM Diboson
 - WZ
 - Same signature
 - Softer non-peaking spectrum
 - **ZZ**
 - A missed lepton appears as 3 leptons + E_T^{Miss}
 - Similar signature
- Instrumental Background
 - With a genuine Z boson
 - **Z**+jets, **Z**γ, ZQQ
 - Without a genuine Z boson
 - ttbar, W+jets, Wγ, WW, QCD

"Leptonic L_T"

Good discriminator between signal and background

$$L_T \equiv \sum p_T^{\ell}$$

WZ Mass Before/After L_T Requirement

Good Data/MC Agreement

Exclusion Limit: W'

 $M_{W'}$ < 1143 GeV Excluded @ 95% CL

Exclusions provided for several values of $\sin \chi$: a TC mixing angle

Limits on Coupling

Reinterpret the data as a limit on the strength of the coupling

2D TC Exclusion Plot

169-680 GeV excluded @ 95% CL $M(\pi_{T}) = \frac{3}{4}M(\rho_{T}) - 25$ GeV

180-935 GeV excluded @ 95% CL $M(\rho_{T}) < M(\pi_{T}) + M(W)$

TC interpretation of CDF Bump excluded @ 95% CL for $\sin \chi = 1/3$

Results

- SSM W' excluded below 1143 GeV in WZ \rightarrow 3lv channel
- $\rho_{\text{\tiny TC}}$ excluded 169-680 GeV in WZ \rightarrow 3lv channel
 - 180-935 GeV if $M(\rho_{\tau}) < M(\pi_{\tau}) + M(W)$
 - Exclude TC interpretation of CDF bump for $\sin \chi = 1/3$
- Strongest limit by CMS/LHC on W' and ρ_{π} in this channel
 - Phys. Rev. Lett. 109, 141801 (2012)

Backup

Atlas Results

- Used 1 fb⁻¹
- Excluded SSM W' @ 95% CL with masses below 760 GeV
- - $M(\rho_{\scriptscriptstyle T}) < M(\pi_{\scriptscriptstyle T}) + M(W)$
- Phys.Rev. D85 (2012) 112012