

Search for W' → tb with the ATLAS Detector

Jeremy Love Representing the ATLAS Collaboration

Motivation

- The Standard Model is a very accurate effective theory but open questions remain, despite the discovery of a Higgs-like Boson
 - Examples: Fine tuning of the Higgs-like boson's mass, fermion mass hierarchy, the Flavor Puzzle, CP violation...
 - Is the answer new Physics?

- Look for W' decaying to top and bottom pair
 - Same final state as S-Channel Single Top
 - Would result in a resonance in the tb invariant mass spectrum
 - Cross section times branching fraction 2.92 pb for 1 TeV W_R¹
 - The search to quarks is more general than leptons
 - Sensitive to both W_R' and W_I' over a broad range of couplings
 - 3rd generation

Analysis Method

- Using 1.04 fb⁻¹ of 7 TeV data
 Phys. Rev. Lett. 109, 081801 (2012)
- Candidate events
 - Triggered on high p_↑ lepton
 - Leptons must be isolated
 - Require E_T miss
 - Require exactly 2 jets
 - Look for b-tags
 - "Triangle Cut" on m_T + E_T^{miss}

- Plot invariant mass
 - For number of b-tags
- Search above 500 GeV
- Combine 1 b-tag and 2 b-tag distributions
 - 1 TeV signal efficiency of 1.38(0.49)% for one (two) tags

E_T^{miss} And Background

- Most backgrounds are taken from MC
 - W+jets scaling and flavor content
 - Looking in non-search region $M_{th} < 500 \text{ GeV}$
 - QCD where normalization is estimated from a binned likelihood fit to the E, miss distribution
 - Taking the shape from QCD rich sample selecting a jet instead of an electron
- Largest background W+jets (tt) for one (two) tagged events

M_{tb} **Distribution**

- Search the M_{th} distribution for events with both one and two b-tags
 - Above 500 GeV using the BUMPHUNTER Tool
 - Find most discrepant point

M_{tb} Distribution

- No significant discrepancy was found
 - Highest data-background differences
 - One-tag: 1024 1129 GeV
 - Probability of background fluctuation 66%
 - Two-tag: 764 842 GeV
 - Probability of being a background fluctuation 72%
- Combine one tag and two tag distributions to set limits

Search Limits

- 95% Confidence Level Limits were set on m(W'_R) > 1.13 TeV
 - Using Bayesian approach with flat priors

Conclusion

- Despite the recent discovery of the Higgs-like Boson searches for Beyond the Standard Model Physics are well motivated
 - One generic search is to look for new massive gauge bosons decaying to tb
- Using 1.04 fb⁻¹ of 7 TeV data ATLAS searched for W'_R → tb
 - Observing no excess, 95% Confidence Level Limits were set on m(W',) > 1.13 TeV
- Work is on going to analyze the full 7 + 8 TeV data with new techniques
 - Increasing sensitivity to low cross sections with a Boosted Decision Tree analysis
 - Studies on going to increase high mass reach using boosted top decays

Thank you

Back up material

Previous Experimental Results W'_{R/L} → tb

	W' \rightarrow e, ν_e / μ , ν_μ	W' → tb
CDF	1.12 TeV (5.3 fb ⁻¹)	800 GeV (1.9 fb ⁻¹)
DØ	1.00 TeV (1.0 fb ⁻¹)	885 GeV (2.3 fb ⁻¹)

