

Status of the search for Z' bosons decaying to leptons in ATLAS

James Coggeshall (University of Illinois)
Representing the ATLAS Collaboration

2012 USLUO Meeting 20 October 2012

What is a Z'?

From our perspective, a Z' is any massive particle (heavier than the Z) that decays to two leptons—anything that would produce a bump in the Drell-Yan mass spectrum

Plot from "CSC book" CERN-OPEN-2008-020

This classification allows us to be sensitive to a range of models of physics beyond the SM!

Analysis strategy

Look for deviations from the Standard Model expectation in dielectron and dimuon events, from 130-3000 GeV in invariant mass

Full detail available in ATLAS-CONF-2012-129

Dielectron acceptance ~70% in signal region Dimuon acceptance ~40% in signal region

Backgrounds

Background	Electrons	Muons
Drell-Yan, $tar{t}$, and Dibosons	Estimated from simulation	Estimated from simulation
W+jets	Estimated from simulation	Negligible
Dijets and γ +jet	Data-driven estimate	Negligible

- For both electrons and muons, the Drell-Yan process is dominant and irreducible
- For muons, an inverted isolation selection is performed to measure contribution from W+jets, $c\bar{c}$, and $b\bar{b}$; found to be negligible

Dilepton invariant mass

All backgrounds are normalized to the Z peak (80-110 GeV) in order to cancel mass-independent systematics

Highest-mass dimuon event

Invariant mass $m_{\mu\mu} = 1258 \text{ GeV}$

Systematic uncertainties

Source	Di	electrons	Dimuons		
	Signal	Background	Signal	Background	
Normalization	5%	NA	5%	NA	
PDF / α_s / α_{em} / scale	NA	20%	NA	20%	
Electroweak corrections	NA	4.5%	NA	4.5%	
Efficiency	< 3%	< 3%	6%	6%	
Dijet and W + jets background	NA	21%	NA	< 3%	
Total	5%	30%	8%	21%	

- Only mass-dependent sources of uncertainty are considered
 - Normalization uncertainty reflects the uncertainty on the Z cross section in the normalization region
- All uncertainties are correlated across all bins in the search region

Limit calculation

- We don't observe an excess, so we set 95% CL upper limits on the number of signal events
- Limit is set using a Bayesian technique in which the systematic uncertainties are incorporated as nuisance parameters
 - A likelihood function is constructed for each prospective signal mass
 - Converted into a posterior probability density using Bayes' Theorem;
 limit found via

$$0.95 = \frac{\int_0^{N_{Z'}^{95}} \mathcal{L}'(N_{Z'}) \pi(N_{Z'}) d(N_{Z'})}{\int_0^\infty \mathcal{L}'(N_{Z'}) \pi(N_{Z'}) d(N_{Z'})}$$

 Limit on the number of events observed is converted into a limit on signal cross section times branching ratio via

$$\sigma B(Z') = \sigma B(Z) \frac{N_{Z'} A_Z}{N_Z A_{Z'}}$$

Limits

Table 4: e^+e^- , $\mu^+\mu^-$ and combined 95% C.L. mass limits on Z'_{SSM} .

	$Z'_{\rm SSM} \to e^+ e^-$	$Z'_{\rm SSM} \to \mu^+ \mu^-$	$Z'_{\rm SSM} \to \ell^+ \ell^-$
Observed mass limit [TeV]	2.39	2.19	2.49
Expected mass limit [TeV]	2.39	2.17	2.49

Table 5: Combined mass limits at 95% C.L. on the E_6 -motivated Z' models.

Model	Z'_{ψ}	$Z'_{ m N}$	Z'_{η}	Z_I'	$Z_{ m S}'$	Z'_{χ}
Observed mass limit [TeV]	2.09	2.10	2.15	2.14	2.18	2.24
Expected mass limit [TeV]	2.07	2.08	2.14	2.13	2.17	2.23

Conclusions

- A search for dilepton resonances in 6 fb⁻¹ of data at \sqrt{s} = 8 TeV has been performed
- No statistically significant excess has been observed
- A lower limit on the mass of an SSM Z' has been set at 2.49
 TeV
 - Most recent CMS limit uses statistical combination with 7
 TeV data; set at 2.59 TeV
- We have by now collected more than twice this amount of data—stay tuned!

Backup

Dielectron event selection

- Good Runs List (ATLAS data quality—stable beam, all subdetectors functioning correctly, etc.)
- At least one primary vertex with which more than two tracks are associated
- Diphoton trigger with thresholds $E_T > 35$ GeV and $E_T > 25$ GeV for leading and subleading objects, respectively
- Reject events with LAr errors, to protect against noise bursts and data corruption
- $|\eta|$ < 2.47, with a fiducial cut of 1.37 < $|\eta|$ < 1.52 to exclude the calorimeter crack region
- Leading electron $p_T > 40$ GeV; subleading $p_T > 30$ GeV
- Both electrons must have a well-reconstructed track in the inner detector, including a minimum requirement on the amount of transition radiation
- Inner detector tracks for both electrons must be matched with clusters in the calorimeter whose shower shapes are consistent with those expected for electromagnetic showers
- Cluster must pass calorimeter quality requirements
- Both electrons must be isolated, such that $\Sigma E_{T}(\Delta R < 0.2) < 7$ GeV

Dielectron acceptance ~70% in signal region

Dimuon event selection

- Good Runs List (ATLAS data quality—stable beam, all subdetectors functioning correctly, etc.)
- At least one primary vertex with which more than two tracks are associated, and $|z_{PV}| < 200 \text{ mm}$
- Single-muon trigger with threshold $p_T > 24$ GeV
- $|d_0| < 0.2 \text{ mm}, |z_0 z_{PV}| < 1 \text{ mm}$
- $p_{T} > 25 \text{ GeV}$
- Both muons must be isolated, such that $\Sigma p_{T}(\Delta R < 0.2)/p_{T} < 0.05$
- Both muons must be combined muons with a high-quality inner-detector track and a muon spectrometer track with at least three hits each in the inner, middle, and outer stations of the precision tracking chambers, and at least one hit in the nonbending plane
- Muons must have opposite charge

Dimuon acceptance ~40% in signal region

Reverse-ID method for dielectron QCD background

- Accounts for fake electrons coming from hadrons, semileptonic heavy flavor decays, and photon conversions
- Template fit in m_{ee} between 80-200 GeV
- Two templates:
 - MC backgrounds (Drell-Yan, W+jets, $t\bar{t}$, and dibosons) after full event selection
 - "QCD template"—data with reversed electron ID cuts—same selection performed on MC and the MC is subtracted from the data, leading to a QCD-enriched data sample
 - The two are summed and normalized to data (using standard selection)—the normalization factor is 1.004
- The QCD template is scaled by this factor; to extrapolate to high m_{ee} , the distribution is fitted
 - Many different fit ranges, using two functions:

$$f_1(x) = p_0 x^{p_1} x^{p_2 \log(x)}$$

$$f_2(x) = p_0 (1 - (x/\sqrt{s}))^{p_1} \cdot (x/\sqrt{s})^{-p_2 - p_3 \log(x/\sqrt{s})}$$

Systematic uncertainty obtained by measuring fluctuations among fits

Theoretical systematic uncertainties

- PDF/coupling uncertainty
 - 7% at 1 TeV; 20% at 2 TeV
 - Obtained by varying the parameter set of MSTW2008, NNPDF2.1,
 CT10, CT10W PDFs and evaluating the individual uncertainty bands
 - Includes uncertainties due to α_s variations
 - Largest difference among all variations in obtained K-factors is added in quadrature to the overall uncertainty
- Electroweak corrections
 - 4.5% at 2 TeV
 - Accounts for neglecting real boson emission, higher order electroweak and $O(\alpha\alpha_s)$ corrections

Experimental systematic uncertainties

Electrons:

- Identification+reconstruction efficiency uncertainty—2% at 2 TeV
 - Evaluated by studying the mass dependence of the calorimeter isolation cut
- QCD multijet background uncertainty—21% at 2 TeV
 - Evaluated by comparing the background with the QCD contribution increased by 1σ with the nominal background

Muons:

- Trigger and identification+reconstruction efficiency uncertainty—6% at 2 TeV
 - Dominated by the effect of large energy loss due to bremsstrahlung in the calorimeter
- Resolution uncertainty—< 3 % at 2 TeV
 - Muon resolution is dominated by the constant intrinsic resolution+misalignment term having only to do with detector geometry
 - Has been found to be negligible due to strict muon reconstruction quality requirements

Details on limit calculation

 A likelihood function is constructed for each prospective signal mass by multiplying all Poisson probabilities for each bin in the search range

Converted into a posterior probability density using Bayes'
 Theorem; limit found via

$$0.95 = \frac{\int_0^{N_{Z'}^{95}} \mathcal{L}'(N_{Z'}) \pi(N_{Z'}) d(N_{Z'})}{\int_0^\infty \mathcal{L}'(N_{Z'}) \pi(N_{Z'}) d(N_{Z'})}$$

 Limit on the number of events observed is converted into a limit on signal cross section times branching ratio via

$$\sigma B(Z') = \sigma B(Z) \frac{N_{Z'} A_{Z}}{N_{Z} A_{Z'}}$$

More details on limit calculation—combination of channels

 Likelihood function defined as the product of Poisson probabilities for the observed data given the expectation from the signal + background template in each mass bin over the search region:

$$\mathcal{L}(data|\sigma B, \theta_i) = \prod_{l=1}^{N_{channel}} \prod_{k=1}^{N_{bin}} \frac{\mu_{lk}^{n_{lk}} e^{-\mu_{lk}}}{n_{lk}!} \prod_{i=1}^{N_{sys}} G(\theta_i, 0, 1)$$

- First product represents the combination of the dielectron and dimuon channels
- Reduced likelihood function is calculated by integrating out the nuisance parameters:

$$\mathcal{L}'(data|\sigma B) = \int \mathcal{L}(\sigma B, \theta_1, ..., \theta_N) d\theta_1, ..., d\theta_N$$