

Search for supersymmetry using events with three leptons, multiple jets, and missing transverse momentum

A. Paramonov (ANL) representing ATLAS collaboration 10/16/2012

Horizon of new physics since July 2012

- A Higgs-like particle at 125-126 GeV was discovered.
- Radiative corrections from Higgs boson to the M(W) make the predicted mass agree with the experimental value
- However, now we need new mechanisms to stabilize the M(Higgs)
 - The loop corrections can make the predicted mass inconsistent with 125 GeV

- + terms from the Higgs self-coupling, W- and Z- couplings
- New particles are required to stabilize the Higgs mass

Light Higgs → Messenger of New Physics

 The super-symmetric (SUSY) top squark is a perfect BSM candidate to solve the Higgs mass problem by canceling out the SM terms:

- Gluino and 3rd-generation squarks are expected to be light (~ 1 TeV) for minimal fine-tuning (naturalness)
- Third generation squarks are expected to be the lightest
- → New TeV-scale Physics is within reach of the LHC

Search Strategy

- We look for final states with four top quarks
 - decay with W-bosons and jets
 - Signature: three or more leptons and multiple jets (four or more jets)
 - Missing transverse momentum

gluino→tTbar+LSP

sbottom→top+W+LSP

3 leptons + ≥4 jets is an extremely clean final state→ Sensitive to a variety new physics processes (incl. SUSY)

Signal Control regions

- The 3-lepton dataset is divided into three control regions and a signal region to normalize SM backgrounds
- tTbar, tTbar+V, and VZ are the major backgrounds in the signal region (V=W or Z)

We looked at 5 fb⁻¹ of data at $\sqrt{s} = 7$ TeV

- Alas, data is in agreement with the SM predictions
- The SUSY processes tend to have high jet multiplicity and high missing-transverse momentum

Limits for gluino-mediated stop

Small losses of signal acceptance in the regime when m(gluino) = 2m(t)+m(LS), close to the diagonal

Conducted a counting experiments to extract the limits

Limits for direct production of sbottom

Conclusions and Outlook

- Set limits on 3rd-gen SUSY
 - ATLAS-CONF-2012-108
- The search is one of the components of the ATLAS' comprehensive program for searches for new physics
 - ATLAS searches include other channels that are seensitive to 3rd generation SUSY (3b-jets, 2SS leptons, etc)
 - A consistent excess in all the relevant channels is key to make a discovery
- Much more data at 8 TeV is up ahead (collected in 2012) → The discovery potential is much improved

^{*}Only a selection of the available mass limits on new states or phenomena shown.

All limits quoted are observed minus 1 \u03c4 theoretical signal cross section uncertainty.