

HIGGS DECAYS TO b-QUARK PAIRS (IN ASSOCIATED PRODUCTION) @CMS

Matthew Fisher Oct 20, 2012

OUTLINE

• Motivation:

- Why Low Mass?
- Why Associated Production?
- Analysis Strategy:
 - How to find a needle in a haystack
- Results
- Conclusions

MOITAVITON

Low Mass Higgs: highest branching ratio to bb

MOITAVITON

Very High Levels of Background Looking for b pairs alone!

Solution:

Look for <u>Associated Production</u>

with a Vector Boson.

 The presence of W/Z Boson brings down
 σ_{Background} ~ 10 nb (from 10⁵!)

ANALYSIS STRATEGY UF

How to find a needle in a haystack? Use a 12500 ton detector!

b Jet identification (CSV) Charged lepton tracking

ECAL

Energy measurement of charged leptons

The entire CMS detector is used in this analysis!

My Responsibilities:

- On-call expert
- Software maintenance
- Hardware maintenance
- Optimization studies
- Firmware upgrades and improvements

Magnet

Energy measurement of jets

HCAL

Momentum reconstruction of muons (vector bosons!)

Muon System

ANALYSIS STRATEGY UF

- 5 Channels: ZIIH, WIV, ZVVH (I = e, μ)
- 2 High momentum b-tagged jets required
- 0, 1,2 Lepton final states:
 - 0: Looking for $Z \rightarrow 2 v$'s: Large MET (160 GeV+)
 - 1: Looking for a W: Med MET (30 GeV+)
 - 2: Looking for a Z: Dilep. Invariant Mass 75-105 GeV
- b-jet energy regression improves dijet mass resolution 15%
- Control Regions enriched in tt/V+jets used to:
 - Verify that data shapes agree with Monte Carlo
 - Used to find normalization scale factors
 - Helps predict the expected background in signal region

ANALYSIS STRATEGY UF

Variables used in BDTs:

p_{Tj}: transverse momentum of each Higgs daughter

M(jj): dijet invariant mass

p_T(jj): dijet transverse momentum

 $p_T(V)$: vector boson transverse momentum (or pfMET)

CSV1: value of CSV for best b-tagged jet

CSV2: value of CSV for second-best b-tagged jet

 $\Delta \phi(V, H)$: azimuthal angle between V (or pfMET) and dijet

 $\Delta \eta$ (J1, J2); difference in η between Higgs daughters

 $\Delta R(J1,J2)$; distance in η - ϕ between Higgs daughters

 N_{ai} : number of additional jets ($p_T > 30 \text{ GeV}$, $|\eta| < 4.5$)

 $\Delta \phi$ (pfMET, J)(only for Z($\nu\nu$)H)

 $\Delta\theta_{\text{pull}}$: color pull angle

8 TeV Data - 5 channels x 2 Bins = 10 such BDTs:

Matthew Fisher

RESULTS

Systematic Uncertainty Sources:

Source	Range
Luminosity	2.2-4.4%
Lepton efficiency and trigger (per lepton)	3%
$Z(\nu\nu)H$ triggers	2%
Jet energy scale	2-3%
Jet energy resolution	3-6%
Missing transverse energy	3%
b-tagging	3-15%
Signal cross section (scale and PDF)	4%
Signal cross section (p_T boost, EWK/QCD)	5-10% / 10%
Signal Monte Carlo statistics	1-5%
Backgrounds (data estimate)	$\approx 10\%$
Diboson and single-top (simulation estimate)	30%

- Full Shape analysis performed on the BDTs
- Expected limit improves by ~50% since
 previous iteration (http://cdsweb.cern.ch/record/1406349)
- Slight excess (p-value~10⁻¹) is still consistent with background-only hypothesis

CONCLUSIONS

- Most recent approved results have been shown for VH → bb at CMS on 2011+2012 data
- A small excess is observed in the limit, but result still consistent with background-only hypothesis.
- With more data we are approaching Standard Model sensitivity.
- We are excited for HCP results, coming soon!

THE END!

