ARTIE-II

Argon Resonant Tranport Interaction Experiment

Nicholas Carrara

Michael Mulhearn, Emilija Pantic, Robert Svoboda, Jingbo Wang

Yashwanth Bezawada, Junying Huang, Walker Johnson, Tianyu Zhu

Jan Boissevain, Sowjanya Gollapinni, Paul Koehler, Eric Renner, David Rivera, John Ullmann

Nuclear Science & Security Consortium

Neutron Calibration

Benefits of low-energy neutrons for calibration:

- **Scattering Length** Some percentage of neutrons above 57 keV will fall into the resonance well.
 - Average *fractional energy loss* is ~4.8%.
 - The effective scattering length is ~30 m.
 - The resonance well has been measured by the ARTIE¹ experiment at LANL, with a <u>higher</u>
 precision follow-up planned for this year.
- Standard Candle Neutron captures on Ar-40 emit a 6.1 MeV gamma cascade.

$$\mathrm{n} + {}^{40}\mathrm{Ar} = {}^{41}\mathrm{Ar} + \{\gamma_j\}
onumber \ \sum_j E(\gamma_j) pprox 6.1\mathrm{MeV}$$

1 Measurement of the total neutron cross section on argon in the 20 to 70 keV energy range, The ARTIE Collaboration, In review at PRL, 2023, (https://arxiv.org/abs/2212.05448).

Why ARTIE?

Previous measurements of the neutron cross section on Argon were done by Winters et. al.²

- The Winters experiment used a long target (221.6 cm) filled with Ar gas.
- This amounted to an *areal density* of approximately 0.211 atom/b.
- This density is not sensitive enough to measure the resonance well predicted at 57 keV.

Cross Section

The cross section is experimentally determined from:

$$\sigma(E) = -\frac{1}{n}\log T(E)$$

where T(E) is the *transmission* as a function of energy, and *n* is the *areal density*:

$$n=rac{
ho d}{m_{
m Ar}} \, [{
m atoms/b}]$$

where ρ is the density of the target, *d* is the length, and m_{Ar} is the mass of an Argon atom.

The areal density for ARTIE-I was approximately **3.3 atoms/b**, compared to the Winters experiment (**0.211 atoms/b**), which allowed the measurement to be sensitive in the **40-70 keV ROI.**

Transmission

The beauty of the experiment lies in its simplicity. The transmission is calculated with the following quantities:

- *N_a* Number of neutrons reaching the detector with material "a" in the active volume.
- B_a Expected background counts with "a".
- Q_a Time integrated beam current from the beam monitor with "a".

The transmission is then computed as:

$$T(E) = rac{N_{
m LAr} - B_{
m LAr}}{N_{
m vac} - B_{
m vac}} rac{Q_{
m vac}}{Q_{
m LAr}}$$

Backgrounds

There were two major backgrounds in ARTIE-I:

- Scattered neutrons from earlier times than the ROI which arrived at the detector later.
- Gammas produced from capture on water in the moderator.

These backgrounds are measured using the *black notch* or *black resonance* method³.

By placing filters with large resonances in the ROI, we can block almost all incoming neutrons.

3 Neutron transmission measurements and resonance analysis of molybdenum-96, J.M. Brown et. al., AccApp, 2017..

Aluminum neutron cross section in the ROI, with black resonances at **5.9**, **35** and **88** keV

JCDAVIS

Black Resonance

For a given active volume material "a", we perform a measurement with and without a filter present.

$$T^f(E) = rac{N^f_lpha - B^f_lpha}{N_lpha - B_lpha}$$

 $B_lpha = rac{N_lpha^f - N_lpha T^f}{1 T^f}$

The effective transmission and hence the background rate at the black resonance — energies can be determined via:

The background rate can then be interpolated for all energies in the ROI from the black resonance values.

3 Neutron transmission measurements and resonance analysis of molybdenum-96, J.M. Brown et. al., AccApp, 2017..

ARTIE-I (tof)

The ARTIE-I experiment was conducted at the **LANSCE** (*Los Alamos Neutron Science Center*) facility at Los Alamos National Lab³ in flight path 13 (FP13).

• We know the flight path length, so then time-of-flight (TOF) determines the energy.

Source

EB-1

e LAr

n

Pitfalls for ARTIE-I

- Thermal insulation since there only existed a foam insulation layer around the target, the boil off rate was quite large (~ 1L / hr).
 - This required **constant refilling**, which sometimes led to spilling and ice formation on the target.
 - This also caused air bubbles to form in the target, disrupting its uniformity in density.
- External temperature effects another systematic came from fluctuations in the beam monitor, which seemed to be correlated with changes in temperature.

	ERROR	STATISTICAL	SySTEMATIC
		(%)	(%)
	Background	±1	
)	subtraction		
	Effective	±1.2	±0.9
	density		
	External		±0.4
	temperature		
	Ice build up		-3.8
	Afterpulses		«1+?
	and dead		
	time		
	Others	«1	«1

• **Thermal insulation** - a new target design will incorporate a vacuum insulation layer, as well as an outer LAr annulus to reduce the heat load to the central target.

- Aluminum windows replacing the mylar windows from ARTIE-I with an inner and outer window (with a vacuum in-between) will help to reduce ice buildup. aluminum windows
- Simulations and back-of-the-envelope calculations of thermal loads for this design show an order of magnitude improvement in reducing the boil-off-rate.

• **DICER binocular setup -** The binocular setup at DICER allows simultaneous target-in/target-out, which reduces the needed beam time and helps with various systematics.

 Additional short target - we will also modify the target to decrease the active volume to ~ 20cm, allowing us to be sensitive to higher energies and directly compare with Winters result in the 70-200 keV range.

Simulations of the 20cm target using the *ArtieSim* code (<u>https://github.com/ARTIE-II/ArtieSim</u>)

