

STERILE NEUTRINO SEARCHES AT FERMILAB

ELIZABETH WORCESTER FERMILAB 54TH ANNUAL (BNL)

USERS MEETING

AUGUST 5, 2021

OVERVIEW

- Introduction to neutrino oscillation, sterile neutrinos, and Fermilab neutrino experiments
- MiniBooNE
- MINOS+
- Short Baseline Neutrino Program:
 - MicroBooNE status
 - SBN sensitivity projections
 - SBND installation status
 - ICARUS commissioning status & analysis plans

THREE-FLAVOR NEUTRINO OSCILLATION

- Measurements of the Z boson at LEP tell us there are three flavors of neutrino with SM weak interactions
- Neutrinos have mass, which implies neutrino mixing and neutrino oscillation

$$|v_{\alpha}\rangle = \sum_{k} U_{\alpha k} |v_{k}\rangle$$

- All three flavors (v_e , v_μ , v_τ) have been observed and their mixing is mostly consistent with two mass differences and a 3x3 mixing matrix ("PMNS matrix")
- The two mass differences and the three mixing angles of the PMNS matrix have all been measured by observing neutrino oscillation

MEASURING OSCILLATION PARAMETERS

Different flavor NuFit 5.0 Source of neutrinos composition after Normal Ordering (best fit) with known energy and $\Delta m^2 L$ $P_{lpha ightarroweta,lpha eqeta}=\sin^2(2 heta)\sin^2$ oscillation bfp $\pm 1\sigma$ flavor 3σ range ν_μ 4E v_{μ} $0.304\substack{+0.013\\-0.012}$ $\sin^2 \theta_{12}$ $0.269 \rightarrow 0.343$ νμ Vµ Two-flavor oscillation probability $33.44_{-0.75}^{+0.78}$ $\theta_{12}/^{\circ}$ $31.27 \rightarrow 35.86$ $\sin^2 \theta_{23}$ $0.570^{+0.018}_{-0.024}$ $0.407 \rightarrow 0.618$ $49.0^{+1.1}_{-1.4}$ $\theta_{23}/^{\circ}$ $39.6 \rightarrow 51.8$ MINOS, MINOS+ ____90% C.L. * Best fit MINOS_MINOS+ data Far Detector Prediction, no oscillations combined analysis 1400 MINOS, MINOS+ combined fit $\sin^2 \theta_{13}$ $0.02221^{+0.00068}_{-0.00062}$ 3.0 10.71 ×10²⁰ POT v, MINOS $0.02034 \rightarrow 0.02430$ 1200 3.36 ×10²⁰ POT v, MINOS 9.69 ×10²⁰ POT v_µ^µ MINOS+ \m_{32}^2 (10⁻³eV²) ≷ 1000 $8.57^{+0.13}_{-0.12}$ $\theta_{13}/^{\circ}$ $8.20 \rightarrow 8.97$ 2.5 800 600 195^{+51}_{-25} $\delta_{\mathrm{CP}}/^{\circ}$ $107 \rightarrow 403$ 400 2.0 NOvA (2019) T2K (2020) 200 Δm^2_{21} Super-K (2018) IceCube (2018) $7.42^{+0.21}_{-0.20}$ $6.82 \rightarrow 8.04$ 0.6 10^{-5} eV^2 0.3 0.4 0.5 0.7 $\sin^2\theta_{23}$ 0.8 0.6 $\Delta m_{3\ell}^2$ to No $+2.514^{+0.028}_{-0.027}$ $+2.431 \rightarrow +2.598$ MINOS/MINOS+ 3-flavor oscillations 0.2 10^{-3} eV^2 Phys.Rev.Lett. 125 (2020) 13, 131802 5 10 15 Reconstructed v, Energy (GeV) 20 30 50

WHY STERILE NEUTRINOS?

- Oscillation probability depends on mixing angle, mass splitting, and L/E
- Based on the already-measured oscillation parameters, we do not expect to see muon neutrino oscillation at small values of L/E
 - i.e.: v_{μ} survival probability should be ~1 and v_e appearance probability should be ~0 for order 1 GeV neutrinos with baselines < 100 km
 - Any evidence for ν_{μ} disappearance or ν_{e} appearance at these L/E values would require a larger mass splitting, which would require at least 1 additional neutrino mass state

WHY STERILE NEUTRINOS?

LSND Collaboration, Phys.Rev.D 64 (2001) 112007

- Oscillation probability depends on mixing angle, mass splitting, and L/E
- Based on the already-measured oscillation parameters, we do not expect to see muon neutrino oscillation at small values of L/E
 - i.e.: v_{μ} survival probability should be ~1 and v_e appearance probability should be ~0 for order 1 GeV neutrinos with baselines < 100 km
 - Any evidence for v_{μ} disappearance or v_e appearance at these L/E values would require a larger mass splitting, which would require at least 1 additional neutrino mass state
- Several experiments have observations consistent with v_e appearance at L/E ~ 1 (+other anomalies)

STERILE NEUTRINO MODEL

- 3 neutrino model → 3 + x neutrino model, where there are x additional, "sterile" neutrinos
- Sterile neutrinos mix with standard neutrinos (allows for additional oscillation), but do not have weak charge, (consistent with # of neutrinos from LEP/astrophysics)
- "3+1" model is simplest scenario; while this model is nearly excluded by data, we often quote sterile neutrino parameters in a simplified "2 flavor" version of this model
 - $\sin^2 2\theta_{\mu e} = 4|U_{\mu 4}|^2|U_{e 4}|^2$ (v_e appearance)
 - $\sin^2 2\theta_{\mu\mu} = 4|U_{\mu4}|^2(1-|U_{\mu4}|^2)$ (v_{μ} disappearance)
 - $\sin^2 2\theta_{ee} = 4|U_{e4}|^2(1-|U_{e4}|^2)$ (v_e disappearance)

2 independent matrix elements

Other possible explanations for these anomalies proposed by theory community; differing levels of hadronic activity can distinguish these possibilities

FERMILAB NEUTRINO EXPERIMENTS

Fermilab Accelerator Complex

- Proton accelerator complex feeds multiple horn-focused neutrino beamlines
- Booster Neutrino Beam (BNB):
 - Neutrino energy ~700 MeV
 - MiniBooNE, SBN (SBND, MicroBooNE, ICARUS)
- NuMI Beam:
 - Wideband, tunable beam, neutrino energy peaks between 3 and 12 GeV depending on tune
 - MINERvA
 - MINOS/MINOS+, NOvA (off-axis), FDs in Minnesota
- LBNF Beam:
 - Future wideband beam
 - DUNE, FD in South Dakota

MINIBOONE EXPERIMENT

- Designed to test LSND signal: search for v_µ→v_e appearance at L/E ~ 1 (~500m/~500MeV)
- 800t mineral oil Cherenkov detector
- 17 years of operation in Fermilab's Booster Neutrino Beam (3 × 10²¹ POT)!

9

MINIBOONE RESULTS

- MiniBooNE observes an excess of events over SM expectation at low energies (LEE)
- The excess events could be due to electrons, single gammas, or lowmass e⁺e⁻ pairs
- The significance of the excess observed by LSND is 3.8σ and by MiniBooNE is 4.8σ, for a combined significance of 6.1σ
- LSND & MiniBooNE prefer consistent region of parameter space for 3+1 sterile neutrino model assumption

MINOS+

- MINOS was a long-baseline experiment that ran in the NuMI beam from 2005-2013; MINOS+ continued operating the experiment with the NuMI medium energy tune (simultaneous with NOvA operations) from 2013-2016
- Functionally equivalent tracking sampling calorimeters (ND+FD)
- Baseline of 735 km → L/E at far detector ~150-250 km/GeV

MINOS+ RESULTS

ν_{μ} Disappearance

 v_e Appearance

Results consistent with 3 neutrino paradigm and significantly constrain 3+1 sterile neutrino model parameters. Combined Analysis MINOS, MINOS+, Daya Bay, Bugey-3

P. Adamson *et al.* [MINOS Collaboration], Phys. Rev. Lett. **122**, 091803 (2019)

GLOBAL STERILE NEUTRINO FIT

Annu. Rev. Nucl. Part. Sci. 2019 DOI 10.1146

Many more inputs: gallium experiments, reactor flux and oscillation experiments, atmospheric neutrinos, solar neutrinos, other accelerator-based experiments...

SBN PROGRAM

Installation in progress

Taking data since 2015

Commissioning in progress

SBN Program

15

LIQUID ARGON TPC

- Massive, homogeneous target for neutrino interactions with good tracking and calorimetric capability
- Ionization electrons drift to anode on a timescale of ms → 3D trajectory, energy
- Scintillation light (128 nm) detected promptly → time, energy

- Detailed images of particle trajectories
 - Significant information about complex final states
- Capability to distinguish electrons from photons:
 - Gap between vertex and shower start for photons (X₀ = 14 cm)
 - dE/dx at shower start (e⁻ vs e⁺e⁻)

uBooNE

BNB Simulation

Photon

MICROBOONE STATUS

- Currently the world's longest running liquid argon TPC (2015-present)
- Analysis of high statistics data and long-term operational experience is informing the future LAr neutrino program
 - 33 papers, 56 public notes so far!
- Physics run complete, R&D program now underway
- On the cusp of releasing a series of first results addressing the anomalies seen in prior short-baseline neutrino experiments

Upcoming analyses focusing on 6 final states:

- **MiniBooNE-like** v_e final state (1eNp, 1e0p)
- **Delta radiative decays**, the leading photon-based explanation for MiniBooNE ($1\gamma 1p$, $1\gamma 0p$)
- **2-body** v_{e} quasi-elastic events with high purity (1e1p)
- **Inclusive** v_e scattering with high efficiency (1eX)

Future sterile-related analyses include: v_u disappearance, combined BNB + NuMI analysis in MicroBooNE, increased statistics (2x), combined SBN analysis with SBND and ICARUS

UPCOMING MICROBOONE RESULTS

- v_e analyses:
 - MiniBooNE-like final state (Pandora, 1eNp, 1e0p)
 - restricting to quasi-elastic kinematics (Deep Learning, 1e1p)
 - all v_e final states (Wire-Cell, 1eX)
- Single photon analysis:
 - targeting Delta radiative decay hypothesis (Pandora, 1γ1p, 1γ0p)

SBN SENSITIVITY PROJECTIONS

v_e appearance

Program

18

Sci.

2019

DOI 10.1146

SBN SENSITIVITY PROJECTIONS

SBND ICARUS (3 years BNB) (3 years BNB) 2000^{×10³} 400×10 LAr1-ND (100m) ICARUS T600 (600m) 1800 P.O.T. = 6.6 1020 P.O.T. = 6.6 1020 350 1600 300 1400 $\Delta m_{41}^2 = 1.10 \text{ eV}^2$ Events / Bin 1000 800 800 $\Delta m_{41}^2 = 1.10 \text{ eV}^2$ $sin^{2}(2\theta_{LL}) = 0.10$ Events / Bin 250 $\sin^2(2\theta_{111}) = 0.10$ - Unoscillated 200F - Unoscillated Oscillated 150 Oscillated 600 Ratio of Osc. to Unosc Ratio of 400 Osc. to Unosc 200 Ratio Osc.-I 1.5 2.5 2.5 Smeared Neutrino Energy [GeV] 1.5 Smeared Neutrino Energy [GeV]

Not shown: MicroBooNE data (included in exclusion curves), v_e disappearance sample, neutral current sample, joint appearance + disappearance fit, etc.

Ron

Annu. Rev. Nuc

. Part.

2019

DOI 10

.1146

SBND INSTALLATION STATUS

CPA frame installed, CPA panel installation in progress. All other TPC components on site and ready for installation. Light collection module production in progress.

CE front-end motherboard

SBND INSTALLATION STATUS

- Cryostat top fabricated
- Warm outer vessel already installed in the SBN-ND building
- Cyrogenics/cryostat installation in progress
- SBND ready for cold commissioning by end of 2022!

ICARUS COMMISSIONING STATUS

- ICARUS has been commissioning since 2020 and collecting neutrino data from the BNB and NuMI beams since March 2021
- Improvements in progress during summer shutdown: install top cosmic ray tagger, upgrade PMT HV, upgrade TPC readout electronics, upgrade cryogenic filters, continued development of analysis infrastructure, data processing, etc.
- First physics data collection will begin in October 2021!

TPC Noise (coherent noise removed)

Electron Lifetime

22

ICARUS FIRST NEUTRINO DATA

Time of PMT light flashes shows excess over the cosmic background rate at the expected neutrino arrival time for both BNB and NuMI beams

ICARUS FIRST NEUTRINO DATA

Track 2 $V_{\mu} n \rightarrow p \mu$ Track 1 Frack 1Frack

ICARUS was the primary BNB user during the full month of June 2021 ("run 0"): 27.8×10^{18} POT from BNB and 52.0×10^{18} POT from NuMI were collected

HcarusTrip

ICARUS STERILE NEUTRINO SEARCH PLANS

- ICARUS is the far detector for the SBN oscillation analysis: with 3 years of data the combined SBND and ICARUS analysis will be able to cover most of the allowed region of parameter space with 5σ sensitivity
- ICARUS will perform a single-detector oscillation analysis using data taken in the coming year (before SBND data is available)
 - Focus on **quasi-elastic-like** ν_{μ} CC and ν_{e} CC candidates to simplify analysis
 - v_{μ} disappearance (BNB): expect ~11,500 events in 3 months
 - v_e disappearance (NuMI): expect ~5,200 events per year
 - Combined analysis of these samples + beam-off samples provides significant sensitivity to potentially interesting areas of parameter space, including regions probed by the current generation of shortbaseline reactor experiments

SUMMARY

- Fermilab's experiments are central to understanding the longstanding mystery surrounding sterile neutrinos
- Significant non-Standard Model excesses observed in multiple experiments, but there
 is also significant tension among experimental results
 - MiniBooNE observes 4.8σ excess (6.1σ combined with LSND) consistent with eV-scale sterile neutrino
 - MINOS+ results consistent with three flavor paradigm
 - Many other experiments around the world contribute to global picture
 - MicroBooNE analyses addressing LEE expected very soon
 - SBN program designed to study multiple appearance and disappearance channels and provide definitive answers
- ICARUS commissioning very successful with physics data coming this year
- **SBND** installation in progress, expect commissioning at the end of 2022
- Fermilab's neutrino experiments are also sensitive to a broad range of physics topics beyond the scope of this talk: precision three flavor oscillation, neutrino interaction/cross-section measurements, other BSM searches...
- Exciting times!