Probing Parton Distributions and Nucleon Structure in the SeaQuest and SpinQuest Experiments at Fermilab

Catherine Ayuso

Mississippi State University

August 3, 2021

54th Annual Users (Virtual) Meeting

Outline

Drell-Yan (DY) Fixed Target Experiments at Fermilab

- E-906/SeaQuest (unpolarized targets)
- E-1039/SpinQuest (polarized targets)
- The Spectrometer
- Highlight of SeaQuest Physics Topic
 - Anti-quark Asymmetry
- Highlight of SpinQuest Physics Topics and Status
- Summary and Outlook

The Drell-Yan Process

<u>DY process</u>: $\rho + \rho \rightarrow \gamma^* \rightarrow \mu^+ + \mu^-$

MRST

DY Fixed-Target Experiments at Fermilab

- 120 GeV proton beam (vs = 15 GeV) from Main Injector
 - Intensity ~ 10¹² protons/sec
- E-906/SeaQuest
 - Targets (unpolarized):
 - Liquid hydrogen and deuterium (LH2, LD2)
 - Solid carbon, iron, tungsten
 - Data taking: 2013-2017
 - Some physics topics
 - Flavor asymmetry in the proton sea*
 - Nuclear effects via DY process
 - Nuclear effects via J/ψ production

DY Fixed-Target Experiments at Fermilab

- 120 GeV proton beam (vs = 15 GeV) from Main Injector
 - Intensity ~ 10¹² protons/sec
- E-1039/SpinQuest
 - Targets (transversely-polarized):
 - NH₃ and ND₃
 - Expected data taking: 2021-2023
 - Some physics topics
 - Anti-quarks Sivers asymmetry
 - Gluonic Sivers asymmetry*

The Spectrometer

- Dynamic nuclear polarization (~ 80% target polarization at 4% uncertainty)
- Kept at 1K in 5 T field, polarization flip every 8 hours

Highlight of SeaQuest Physics Topics:

Anti-quark Asymmetry

Nucleon Sea

- Nucleon sea naively assumed to be flavor symmetric
 - Gluons don't couple to flavor
 - Masses of u and d quarks are similar and small, compared to QCD scale

Perturbative contributions calculated to be small!

D. A. Ross and C. T. Sachrajda, Nucl. Phys. B149, 497 (1979)

NMC (1991)

Gottfried Sum Rule:

$$S_{G} = \frac{1}{3} + \int_{0}^{1} \frac{2}{3} (\bar{u}^{p}(x) - \bar{d}^{p}(x)) dx$$

- Symmetric sea implies $S_G = 1/3$
- NMC experiment (LD2, LH2, 90
 GeV and 280 GeV μ-beam)

$$S_G = \int_0^1 (F_2^p - F_2^n) dx / x = 0.235 \pm 0.026$$

More Evidence of Flavor Asymmetry

 CERN NA51 (1994): 450 GeV pbeam, LD2, LH2 targets

$$\frac{\overline{d}}{\overline{u}}\Big|_{\langle x \rangle = 0.18} = 1.96 \pm 0.15 \pm 0.05$$

- FNAL E866/NuSea (1998): 800 GeV p beam LD2, LH2 targets
- Studied actively by effective QCD models & lattice QCD
 - Precise measurement at large x was needed

R.S. Towell et. al. Phys. Rev. D 64, 244-250

Dove, J., et al., Nature 590, 561–565 (2021)

- Large asymmetry over entire range measured
- Discrepancy with NuSea could be due to: different beam energy, acceptance and kinematic coverage
 - Discrepancy at high x is not well understood

Model Calculation Comparison

Dove, J., et al., Nature 590, 561–565 (2021)

Reasonably described by the predictions of

"Pion cloud model" (Alberg & Miller)

$$|p\rangle = (1 - \sum a_i)|p_0\rangle + a_{|N\pi\rangle}|N\pi\rangle + a_{|\Delta\pi\rangle}|\Delta\pi\rangle + a_{|\Lambda K\rangle}|\Lambda K\rangle + \cdots$$

"Statistical model" (Basso et al.)

SpinQuest Motivation

Explore the anti-quark and gluon Sivers

functions, f_{1T}^{\perp} :

- Large transverse single spin asymmetries (TSSAs), $A_N (\propto f_{1T}^{\perp})$, observed in polarized pp-collisions
- Study/constrain antiquark and gluon orbital angular momentum contributions to proton spin

 $A_N=rac{dm{\sigma}^{\Uparrow}-dm{\sigma}^{\Downarrow}}{dm{\sigma}^{\Uparrow}+dm{\sigma}^{\Downarrow}}$

Sivers Function at SpinQuest

- Measure azimuthal asymmetry in:
 - DY dimuon production \rightarrow study anti-quark Sivers
 - J/ ψ meson dimuon decay \rightarrow study gluon Sivers

J/ψ Production

- The SpinQuest experiment: access • to dimuon decay of the J/ ψ meson (charm, anti-charm bound state)
- Mechanisms: •
 - gluon-gluon (g-g) fusion 1.
 - quark anti-quark (q-q-) annihilation 2.

J/ψ TSSAs

- TSSAs (up to ~40%) observed in light hadron production in 0.1 < x < 0.5
- g-g fusion: dominant mechanism for J/ψ production at SpinQuest
 - $\,\circ\,$ Acceptance $x_{_F}\,\gg 0$ at J/ ψ mass
 - q-q- vs. g-g / Σ cross sections → gg mechanism
 dominant at SpinQuest's E_{cm} (=15GeV) for x_F > 0.42
- J/ψ TSSA: study of gluon Sivers and QCD dynamics in hadron production with **improved** statistics in higher x_F region!

Anticipated Uncertainty for J/ψ TSSAs

Binning in (x_T, ϕ_{S_i})

- Rate of in-acceptance dimuons estimated by GMC:
 - PYTHIA8 charmonium production
 - Geometric acceptance considered
- **One week** of dedicated data taking was assumed
 - Integrated luminosity: L_{1w} = $1.75e4 \text{ pb}^{-1} \& L_{sim} = 6567 \text{ pb}^{-1}$
 - Dilution factor: f = 0.176
 - Polarization: P = 0.8

 φ_{s} = azimuthal angle b/t target spin & hadron plane

Timeline for SpinQuest

Year	Month	Event
2018	May	Granted Stage-2 approval from Fermilab Decommissioned SeaQuest components
2019	June	Transferred the pol. target from UVA to Fermilab Sanity checking/debugging detector components using cosmic rays
2020		Testing spectrometer components with cosmic ray data (limited access due to COVID-19)
2021	January	Testing/debugging spectrometer components
	November	Commission target and detector
December 2021- 2023		Production runs

Summary and Outlook

- SeaQuest and SpinQuest aim to probe nucleonic structure and parton distributions in newer kinematic regions and higher accuracy
- E-906/SeaQuest with unpolarized targets
 - Large anti-down vs. anti-up asymmetry at high x was observed
 - Also investigating nuclear effects via DY and J/ψ and more topics!
- SpinQuest polarized DY and J/ ψ data will constrain anti-quark and gluon Sivers functions
 - SpinQuest measurement on J/ ψ TSSA is anticipated to be the first published results.

This work is supported in part by the US DOE contract # DE-FG02-07ER41528

Backup Slides

Importance of Gluons and Seaquarks

• Proton spin puzzle:

$$rac{1}{2}=rac{1}{2}\Delta\Sigma+J_G+L_q+L_{ar{q}}$$

