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Questions

What is AI?

Why do we need AI?

How do we use AI?

Where do we employ
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AI?

When?
Now!

Who?
A very 

long list…



What is Artificial Intelligence?

• Today: machine learning (ML), which is function approximation:
 map inputs to outputs, →x ↦ → y
o → y = F(→ x) unknown, probably not analytic

→ try to find approximation → y ≈ F′(→ x; → w) by optimizing weights → w
• Deep learning uses networks w/ many layers to derive features from inputs
o More “neurons” → more multiplications, weights (thousands–millions)

1. Training: optimizing weights to improve function approximation
2. Inference: applying optimized function to new data to make predictions
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“AI is whatever hasn’t been done yet.”
– Douglas Hofstadter

The Neural Network Zoo

https://www.asimovinstitute.org/neural-network-zoo/


Challenges…
• HL-LHC, DUNE, LSST, SKA will 

produce up to exabytes of data per 
year

 More than order of magnitude
above current dataset sizes
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DUNE
2026

~30 PB

• Moore’s Law continues

o But without Dennard scaling

 Single-thread performance can’t 
keep up with next-gen experiments



…provide Opportunities
• Not just more data: more complex data

• New discoveries rely on precision measurements

• Need to:

 Extract more information to separate very small 
signals from very large backgrounds

 Operate instruments at cutting edge performance 
for next-gen experiments to succeed
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• Augment CPUs with new 
processors: GPUs, FPGAs, & more

• Deep learning is a natural fit for 
these devices

o Collaborate with industry and 
open-source communities

CMS HGCal simulation,
200 simultaneous pp collisions



Themes in AI
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Real-Time

Deploy AI in operations, 
controls, sensors…

Heterogeneous 
Computing

Speed up AI algorithms and take 
advantage of new resources

And more!
• Anomaly detection
• Invertible networks
• Robustness/uncertainty 

quantification & reduction

Graphs

Exploit relationships within data
(generalization of image recognition)

arXiv:1801.07829

https://arxiv.org/abs/1801.07829


Ron Hook / shutterstock.com

From Distant Galaxies to Miles Underground
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Astrophysics & 
Cosmology

Collider Physics

Accelerators

Neutrino Physics
Theory



Astrophysics & Cosmology
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DeepShadows:
(arXiv:2011.12437)
• Convolutional NN

to distinguish
Low Surface
Brightness Galaxies
from artifacts in DES data

• 92% accuracy, vs. ~80% accuracy for simpler ML methods

DeepMerge II:
(arXiv:2103.01373)
• Goal: identify galaxy mergers
• Domain adaptation (bottom) to 

train CNN on simulation (left) 
and apply to data (right) with 
similar performance (vs. w/o 
domain adaptation, middle)

merger

non-merger

merger

non-merger

true merger

https://arxiv.org/abs/2011.12437
https://arxiv.org/abs/2103.01373


arXiv:2004.10710

• ML uncertainty quantification 
methods don’t reproduce analytic 
results; Deep Ensembles better than 
Concrete Dropout, Bayesian NNs

arXiv:2106.11315

arXiv:2105.10524

• Left: CNN detects ~10×
more DES images w/ 
ghosting/scattering vs. 
ray-tracing approach

• Right: CNN 95% accurate 
in removal of false 
detections in multi-
messenger events

Astrophysics & Cosmology

54th Annual Users Meeting Kevin Pedro 9

• Graph NN for unsupervised optimization
of telescope time: pick best galaxies to observe

• Outperforms conventional strategies

arXiv:2106.09761

https://arxiv.org/abs/2004.10710
https://arxiv.org/abs/2106.11315
https://arxiv.org/abs/2105.10524
https://arxiv.org/abs/2106.09761


Collider Physics
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• Semi-supervised 
Graph NN to reject 
pileup: trained on 
charged particles → 
can use data!

• Significantly 
improves on classical 
algorithm

BOOST 2021
PU = 140

PU = 140

DPF 2021
• Dynamic Reduction Network (arXiv:2003.08013)

 Learn best graph of inputs & use it for regression

• Improve electron resolution by 10%
(vs. state of the art)

• Work in progress: apply to missing energy

https://indico.cern.ch/event/1037559/contributions/4451753/
https://indico.cern.ch/event/1034469/contributions/4434644/
https://arxiv.org/abs/2003.08013


Collider Physics
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DeepCalo
arXiv:2007.10359

HCAL local reconstruction
arXiv:2010.08556

Inference as a Service:
• GPU processes 

multiple events 
together: increase rate 
by 10× or more

• 1 FPGA can serve 1500 
CPUs for an algorithm

• Convert NNs to run on FPGAs (arXiv:2103.05579) for
low-latency and low-power scenarios

• Simple NNs, CNNs (arXiv:2101.05108), GNNs 
(arXiv:2008.03601), & more!
o Preserves GNN performance w/ ~1 μs execution time

• Quantization-aware pruning (arXiv:2102.11289) to improve 
computational efficiency

• Can also be used with ASICs

https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2010.08556
https://fastmachinelearning.org/
https://fastmachinelearning.org/
https://fastmachinelearning.org/hls4ml/
https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/2103.05579
https://arxiv.org/abs/2101.05108
https://arxiv.org/abs/2008.03601
https://arxiv.org/abs/2102.11289


arXiv:2106.09911

Neutrino Physics
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• ProtoDUNE data processing dominated by 
large CNN: 220/330 total seconds/event

• GPU as a service: CNN 17× faster, full 
workflow 2.7× faster (arXiv:2009.04509)

• 1D CNN can localize and extract low-
energy signals in noisy LArTPC data

• Significantly more efficient than
traditional approach

https://arxiv.org/abs/2106.09911
https://arxiv.org/abs/2009.04509


Reconstruct multiple clusters in CMS
high granularity calorimeter

vCHEP 2021
arXiv:2106.01832

84% edge efficiency for LArTPC

vCHEP 2021

• Common set of tasks for collider & 
neutrino physics: combine low-level 
detector hits into tracks and clusters

• Exa.TrkX, LDRD:
 Employ graph NNs to improve

accuracy & speed
• Custom low-level operations 

contributed back to ML frameworks 
(TensorFlow, PyTorch)

arXiv:2103.06995

vCHEP 2021

High efficiency & sub-quadratic 
inference time for LHC tracking

Clustering & Tracking
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https://indico.cern.ch/event/948465/contributions/4324136/
https://arxiv.org/abs/2106.01832
https://indico.cern.ch/event/948465/contributions/4324137/
https://exatrkx.github.io/
https://computing.fnal.gov/ldrd-projects/
https://arxiv.org/abs/2103.06995
https://indico.cern.ch/event/948465/contributions/4323753/


Accelerators

54th Annual Users Meeting Kevin Pedro 14

• Bayesian optimization for beam 
alignment at PIP2IT

• Converges faster than Simplex

P. Lyalyutskyy, E. Pozdeyev

– Before
– After AI for Gradient Magnet Power Supply

@ FNAL Booster:
• LSTM surrogate model reproduces 

system dynamics from data (bottom left)
• MLP agent performs ~2× better than 

existing regulation circuit (bottom right)
 Agent optimized for FPGA w/ hls4ml, 

inference at 15 Hz

arXiv:2011.07371

https://arxiv.org/abs/2011.07371


Accelerators
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L-CAPE: Linac Conditional 
Anomaly Prediction of Emergence
• ~3000 unique device data streams
o Frequencies: 66 ms, ~2–3 minActual Data



Accelerators
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L-CAPE: Linac Conditional 
Anomaly Prediction of Emergence
• ~3000 unique device data streams
o Frequencies: 66 ms, ~2–3 min

• LSTM autoencoder identifies 
outage precursors as anomalies

Model Output



Accelerators
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L-CAPE: Linac Conditional 
Anomaly Prediction of Emergence
• ~3000 unique device data streams
o Frequencies: 66 ms, ~2–3 min

• LSTM autoencoder identifies 
outage precursors as anomalies

Model Output

READS: Real-Time Edge AI for 
Distributed Systems (arXiv:2103.03928)
• MI/RR beam loss deblending (left)
• Mu2e slow spill regulation (right)
 Aim to deploy on FPGAs

IPAC 21

https://arxiv.org/abs/2103.03928
https://refs.jacow.org/reference/show/103185


ML4Jets 2021

• CATHODE: combine unsupervised 
anomaly detection techniques for 
huge sensitivity increase in model-
agnostic LHC searches

Theory
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arXiv:2010.12703

• Invertible NN outperforms 
classical method to reconstruct 
nuclear response functions

arXiv:2012.09873

• Invertible NN 
enables LHC 
measurements of 
QCD splitting 
parameters w/ 
precision 
comparable to 
LEP

arXiv:2012.04533

• NN 
combines 
cluster 
shape & 
spatial info 
for LHC 
tracking

• Reduces fake combinatorical backgrounds 
while preserving efficiency

https://indico.cern.ch/event/980214/contributions/4413500/
https://arxiv.org/abs/2010.12703
https://arxiv.org/abs/2012.09873
https://arxiv.org/abs/2012.04533


Final Thoughts
• AI at FNAL is reaching escape velocity
o Dozens of projects ongoing
o Not just strong, but leading results
o Maturing and moving into production

• In addition, many new efforts starting!
o Next year’s talk will have a whole different set of results
 AI can solve our big data & computing challenges, but it is not egalitarian
o Past decades: classical algorithms, one CPU is ~as good as another
o Today: better devices (GPUs, FPGAs, etc.) lead to better results
 Both hardware and support cost more

• AI can be used for good or evil: be wary of bias and misuse
o FNAL scientists, engineers, technicians, users have a responsibility to 

promote scientific and humanitarian progress
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Backup



Clustering & Tracking
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arXiv:2103.06995

arXiv:2106.01832
vCHEP 2021

Clustering reconstructs high 
granularity calorimeter energy

https://arxiv.org/abs/2103.06995
https://arxiv.org/abs/2106.01832
https://indico.cern.ch/event/948465/contributions/4324136/
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