Commissioning of RAON Injector and Superconducting Linac

Dong-O Jeon,

Ji-Ho Jang, Hyunchang Jin, Hyung-Jin Kim on behalf of the project 2023.02.28.

Accelerator Systems

SRF Test Facility & Cavity Tests

SRF Test Facility

- 1 onsite 3 VT pits and 3 cavities per pit, 3 HT bunkers
- 1 offsite (15 Km from site) 2 VT pits and 2 cavities per pit
- Test all RAON cavities QWR (82.25 MHz), HWR (162.5 MHz) and SSR1 & 2 (325 MHz)

SCL3 (Superconducting Linac)

SCL3 and Cryo-plant Installation completed 2022 & Beam commissioning started in Oct, 2022

- Cryomodule(CM) & Warm section were assembled in the clean booth at tunnel
- Total Particle counts(size=0.5um above/10 mins) were less than 30 counts

SCL3 cryoplant (4.2 kW @ 4.5 K)

Compressors and Oil Removal System (WCS)

SCL2 cryoplant (13.5 kW @ 4.5 K)

Cold Box(CB)

Compressors and Oil Removal System (WCS)

Cold Box (CB) (Left warm side, right – cold side)

Injector Beam Commissioning

- Injector

- * Ion Source: 14.5 GHz ECR IS
- * LEBT: 10 keV/u
- * RFQ: 507 keV/u, 98% transmission
- * MEBT: 507 keV/u, 4 bunchers
- **Beams**: Ar⁹⁺(A/q=4.4), Ar⁸⁺(5.0), Ar¹¹⁺(3.6)

- Beam Diagnostics

nstitute for Basic Science

	LEBT	MEBT
Allison scanner	2 (X,Y)	-
Wire scanner	4	4
Faraday cup	4	2
ACCT	1	2
BPM	-	6
Beam viewer	2	1
Fast Faraday Cup	-	1

LEBT beam emittance & parameters

- Beams: Ar $^{9+}$ (~30µA), Ar $^{8+}$ (~47µA)
- Beam parameter measurements (Allison scanner, wirescanner)
 - BIPAM measures initial beam parameters (wirescanner)
 - controlling beam optics
 - matching to RFQ
- Emittance measurement (Allison scanner, BIPAM, quad scan)

LEBT beam emittance & parameters

LEBT orbit correction

- orbit correction

Hyunchang Jin

Before

After

4

2

RFQ (Radio Frequency Quadrupole)

- RFQ RF set-point (Ar⁹⁺, Ar⁸⁺):
 - beam transmission measured using MEBT ACCT2
 - Fitting against model

stitute for Basic Science

- * Measured transmission = 94 % (simulation = 98%)
- Cavity RF power: 51.5 kW (Design ~39.1 kW (20% margin))

Off-axis beam injection to RFQ

MEBT beam emittance & parameters

MEBT buncher RF set-point

- MEBT bunchers RF set-points were set using phase scan technique:
 - obtained RF set-points of 4 bunchers
- measured beam energy is 514 keV/u (design 507 keV/u)

MEBT Bunch Length Measurement

- Bunch length measurement at the MEBT with Fast Faraday Cup (FFC).
- Bunch length was 0.297 ns = 8.7° (1 σ).

Courtesy of Ki-Dong Kim et al

Injector transmission

- 10% beam duty operation: 96 minutes, 10Hz, 10msec (2021.12.07). * Injector transmission > 94% (determined by RFQ)
- orbit correction and matching help to increase the beam transmission.

Injector beam transmission

SCL3 Beam Commissioning

• One QWR cavity per cryomodule.

istitute for Basic Science

- Quad doublets are used for focusing.
- Beam diagnostics including Halo Collimators (aperture 36 mm) installed at beam boxes.

Beam Transmission

- Transmission ~94%, using ACCT(LEBT) and ACCT(MEBT)
- Transmission averaged over 5 minutes.

Ji-Ho Jang

QWR RF set-point by Phase Scan

P

QWR tuning (Oct/2022)

- Tuning 5 QWR cavities were done in Oct/2022 and achieved a beam energy of 0.697 MeV/u.
- Measured beam energy was slightly less than beam dynamics TRACK calculation.

Beam Energy of QWR cavities: Phase Scan vs TRACK code

QWR tuning (Dec/2022)

- Beam tuning of the 22 QWR cavities achieved in 2 days:
 - QWR beam energy : (phase scan) 2.457 MeV/u (TRACK) 2.444 MeV/u,
 - QWR3, QWR20 were off: RF control issue and detuned frequency,
 - Re-phasing of nearby cavities was done to compensate the off cavities.

SCL3 Profiles & Beam Parameters

Halo monitors

Zero beam loss detected.

- Halo monitors for QWR1~QWR5 showing noise in background level.
- Halo monitors for QWR6 showing back-streaming electron from the Faraday Cup (observed only when beam is on).

Ji-Ho Jang

- Signal increases, as the cavities are tuned.

Summary

- Through the injector beam commissioning, beam tuning procedures and applications have matured.
- The SCL QWR section was commissioned, achieving 2.457 MeV/u for Ar⁹⁺ beam.
- Beam parameters were measured and ~100% transmission achieved for MEBT/SCL3.
- Identified some issues:
 - Multipacting issue (couplers)
 - Stability issue: some QWR cavities have stability issues due to helium pressure fluctuation etc.
- Planning to do the commissioning of the rest SCL3 in Mar/2023.

Rare Isotope Science Project

• Goal: To build the heavy ion accelerator complex RAON, for rare isotope science research in Korea.

○ Budget: KRW 1,518 billion (US\$ 1.32 billion, 1\$=1,146krw)

- accelerators and experimental systems : 522.8 billion won
- civil engineering & conventional facilities : 996 billion won (incl. site 357 billion won)

• Period: 2011.12 ~ 2022.12 (1st Phase)

Accelerator & Experiment Systems

Development, installation, and commissioning of the accelerator systems that provides high-energy (200MeV/u) and high-power (400kW) heavy-ion beam

Providing high intensity RI beams by ISOL and IF

ISOL: direct fission of ²³⁸U by 70 MeV proton

IF: 200 MeV/u ²³⁸U (intensity: 8.3 pµA)

Providing high quality neutron-rich beams

e.g., ¹³²Sn with up to 250 MeV/u, up to 10⁹ particles per second

Providing more exotic RI beams by combining ISOL and IF

Conventional Facility

Construction of conventional facility to ensure stable operation of the heavy-ion accelerator, experiment systems, and to establish a comfortable research environment

RAON Layout

RI Beam production

	KoBRA	ISOL	IF Separator
Driver	SCL3(ECR/ISOL)	Cyclotron	SCL3 + SCL2
(Post) Acceleration		SCL3 or SCL3 + SCL2	
Production Mechanism	Direct reactions Multi Nucleon Transfer	P induced U fission	PF, U fission
RIB Energy	< a few tens of MeV/u	> a few of keV/u	< hundreds of MeV/u

