Beam Dynamics for RAON Linac (Injector, SCL3, SCL2)

Fermilab workshop 2023. 3. 1.

Ji-Ho Jang Dong-O Jeon, Hyunchang Jin (IBS/RISP)

Contents

Introduction
Injector Beam Dynamics
SCL Beam Dynamics
Summary

Introduction

RAON Layout

RAON beam dynamics

- \Box Accelerating various ions with proton(A/q = 1) to uranium (A/Q=7.2)
 - Stable ion beams from two ECR IS
 - RI beams from ISOL
- □ Accelerating multiple charge states
 - Uranium beam of 400 kW (200MeV/u) on IF target.
 - * ECR~SCL3: 2 charge states (33+, 34+)
 - * SCL2: 5 charge states (77+ ~ 81+)
- Injector
 - 2 ECR ion source: 28GHz (uranium), 14.5GHz(beam commissioning)
 - RFQ: input energy of 10 keV/u, output energy of 500 keV/u
- □ SCL3
 - QWR, HWR: ~ 18.5 MeV/u for uranium beam
- □ P2DT: 180° bending section
 - 2nd order achromatic, isochronous design : 5 charge states for uranium beams
- SCL2
 - SSR1, SSR2: > 200MeV/u (400 kW) for uranium beam
- Test of cavity and module is in progress

Injector Beam Dynamics (LBET, RFQ, MEBT)

LEBT Layout

- Two ECR ion sources: 28GHz, 14.5GHz
- 14.5 GHz ECR for beam commissioning (Ar 9+, about 30 μ A)
- □ LEBT Beam Dynamics
 - Charge selection at slits
 - 28 GHz: 1st order achromatic (33+, 34+ uranium)
 - 14.5 GHz: single charge state

LEBT beam dynamics (design)

LEBT Beam Dynamics (modification)

LEBT beam dynamics can be modified from beam commissioning (Ar beam)
Reconstruction of input beam by using Allison data

[TRACK simulation (using Allison)]

mm-mrad	X	у
Design	0.12	0.12
Allison	0.039	0.041

Particle distribution at WS in LEBT

- □ Particle distribution (Ar9+)
- 4 WS in LEBT
- Compare WS data and TRACK simulation to check input distribution (based on Allison data): well matched

RFQ

RAON RFQ

- Designed by RI (Dr. L. Young), Manufactured by domestic company (Vitzro)
- Voltage ramping in order to reduce total length of RFQ
- 4-vane type, 1.7 kilpatrick, CW operation
- Transmission: ~ 98% (design) ~94% (commissioning, Ar)

MEBT Beam Dynamics

Layout

- Long drift space: single bunch selector for neutron facility
- 4 buncher cavity, 11 quadrupole

Beam dynamics: TRACK

Injector beam dynamics

□ TRACK simulation

- Uranium : 33+, 34+
- # of macro particles: 50,000 + 50,000
- RFQ: Using RFQ routine in TRACK

[Transverse normalized rms emittance]

mm-mrad	input	output	Δ (%)
Horizontal	0.119	0.134	12.6
Vertical	0.120	0.132	10.0

[TRACK result for injector]

Beam Profile at WS in MEBT

- Comparing rms beam envelop in MEBT and beam profiles at WS positions between TRACK and WS data (Ar beam)
 - RFQ TRACK simulation and modified distribution for rms beam size

[rms envelope and beam profile through MEBT]

Institute for Basic Science

SCL Beam Dynamics (SCL3, P2DT, SCL2)

RAON SCL

RAON SCL

- 4 types of cavities: QWR, HWR, SSR1, SSR2
- Normal conducting quadrupole doublet for transverse focusing
- Large aperture diameter for small beam loss: 40 / 50 mm
- Charge stripper in P2DT for changing charge state

SCL lattice

RAON SCL Lattice

- $-\beta_{0}$ (TDR) = 0.047 (QWR), 0.12 (HWR), 0.30 (SSR1), 0.51(SSR2)
- Reference particle: ²³⁸U^{33.5+} (QWR, HWR), ²³⁸U⁷⁹⁺ (SSR1, SSR2)
- HWR/SSR output energy: 18.5 / 200 (MeV/u) for uranium
- Total number of CM / cavities in linac (SCL3+SCL2): 100 / 331
- CM/cavities for buncher: 2/4 (HWR) in bending section,

2/6 (SSR2) in energy upgrade region

SSR1

0.30

23

3

69

SSR2

0.51

23

6

Field Map of SC Cavities

□ Field maps of SC cavities are modified on 2019.

Steering Effect

□ Steering effect in QWR cavity

- Asymmetry in geometry of QWR cavity \Rightarrow kick beam from beam axis.
- Vertical beam center shift by the steering effect < 0.5 mm

SCL3 beam dynamics

SCL3 Orbit Correction

Beam Profile at WS in QWR and HWRA

- □ There are 4 wire scanners each in QWR and HWRA entrance regions
- We measured beam profiles in the QWR beam commissioning. (4 WS data in QWR, 3 WS ata in HWRA: TRACK(blue) WS(red))
- TRACK calculation: using modified RFQ output beam \Rightarrow Need more study

Charge stripper effects

- Charge stripping for efficient acceleration in SCL2
 - Initial low intensity: Carbon \Rightarrow High intensity: Liquid Lithium
 - Carbon thickness = 1 mg/cm²
 - Slit after charge stripper: removing halo particles

P2DT Beam Dynamics

- □ Beam dynamics: TRACK, GICOSY, TRACE3D
 - Mirror symmetric design
 - 2nd order achromatic, isochronous design
 - TRACK: 21 charge states after charge stripper

[rms emittance (before and after BM]

=		input	output	Δ (%)
	х	0.136	0.176	29.4
	у	0.135	0.162	20.0
9.79 cm	Long.	1.150	1.392	21.0
	Transverse:	mm-mra	d	
	Longitudina	ıl: keV/u-ns	24	RIST

SCL2 Beam Dynamics

- □ Beam dynamics: TRACK (Uranium, 77+ ~ 81+)
 - Matching P2DT-SSR1, SSR1-SSR2, SSR2-Energy upgrade region
 - Kinetic energy = 203.4 MeV/u

institute for Basic Science

Transverse: mm-mrad Longitudinal: keV/u-ns

SCL2 Cavity Types

Different types of SCL21 and SCL22 cavities: SCL21: SSR1 or HWR SCL22: SSR2 or SSR2_IHEP

[Ez on beam axis (SSR1 and HWR)]

[Ez on beam axis (SSR2 and SSR2_IHEP)]

Number of additional CM for 200MeV/u

- Beam dynamics: TRACK simulation with same RF set-values
- Need more study: optimization on cavity design

[Number of CM and final Energy]					
SCL21	SCL22	CM (Add)	KE [MeV/u]		
SSR1	SSR2	-	203.4		
	SSR2 (IHEP)	4	200.9		
HWP	SSR2	2	206.4		
	SSR2 (IHEP)	6	202.8		

Summary

□ SCL3 beam commissioning is in progress.

Injector beam dynamics was modified for argon beam by using the beam commissioning results.

□ P2DT/SCL2 lattice was fixed for SSR1, SSR2 types of SCL2 cavities.

Beam dynamics study with new types (or modification) of SCL2 cavities is in progress.

Thank you very much.

