Engineering Design and Fabrication Process of SSR1/2 SC Cavity

Myung Ook Hyun / SCL Development Team 2023.03.01.

SSR1 Cavity Design (TRIUMF)

SSR1 3D Model

SSR1 Exploded View

SSR1 Cavity Prototype (TRIUMF)

Jacketing

Proceeded By TRIUMF

SSR2 Cavity Design - Layout

SSR2 3D Model

SSR2 Exploded View

- SSR2 Superconducting Cavity
 - Cavity : 3T pure niobium (RRR 300 grade), single spoke, 0.51 beta, 325MHz, bulk machining beam port, stiffening ring and spoke stiffener for structural reinforcement, vacuum braze at every ports and flanges, EBW for weldment attach, beam port trimming for frequency adjustment
 - Jacket : 3T STS316L, 1.3 bar pressure vessel design (ASME Section-2 Part-D Subpart-1), liquid helium volume 51.32L (33.05L for SSR1), GTAW for weldment attach, transition ring for stiffening ring interface

SSR2 Cavity – Mechanical Analysis

SSR2 SC Cavity Mechanical Design

nstitute for Basic Science

- Before applying spoke stiffeners, spoke deformation/stress is quite large due to helium pressure. After applying spoke stiffeners at the upper and lower side of spoke, deformation/stress is reduced.
- Still shell deformation/stress is over yield strength so that we applied stiffener rings at the front/rear side of shell surface. After applying stiffener rings, deformation/stress of shell is reduced.

SSR1 SC Cavity Harmonic Analysis

	ANSYS Simulation (Modal/Harmonic)	Vibration Test (Lateral Vibration)	Estimated Mode
1 st Mode	46.73(1)/62.05(2)Hz	47.96Hz	Simple Bending Mode (Side/Front)
2 nd Mode	240.77(4)Hz	234.6Hz	Free Cover Fluctuation Mode
3 rd Mode	265.54(5)Hz	256.1Hz	LHe Inlet Bending Mode
4 th Mode	349.38(8)Hz	349.2Hz	Fixed Cover Fluctuation + Free Cover Torsion
5 th Mode	579.55(17)Hz	580.8Hz	LHe Outlet Bending Mode
6 th Mode	710.06(23)Hz	737.3Hz	RF&LHe Outlet Ports Combined Bending Mode

•

SSR1 SC Cavity Harmonic Analysis

Common Modes : 60 / 240 / 350 / 580 / 710 Hz (Approximately)

SSR1 TR#1 Vibration Test

Vibration Test (done by KIMM)

- Test Condition
- .. 0.3G / 5 to 1000Hz Sweep
- .. Sensor : Spoke Center/Covers
- Lateral Vibration Machine

Spoke Fixture for Sensor - Clamping Fixture (Lower Left)

- Installed by left/right thread

Purpose of Vibration Test - Check the resonance of SSR1 dressed Cavity (around 42/240Hz) - Draw the resonance map

SSR1 TR#1 Vibration Test (2021. 03. 03~04)

Test Results - 1st Trial : Stopped due to high resonance @ 240Hz → Changed Glevel from 0.5 to 0.3 - 2nd Trial : Done! .. 1st Peak : 47.96Hz .. 2nd Peak : 234.6Hz .. 3rd Peak : 256.1Hz .. 4th Peak : 349.2Hz

- .. 5th Peak : 580.8Hz
- .. 6th Peak : 737.3Hz

Consideration

- Main Peak : 1~4 peaks
- Need double-check : 5/6th peaks

Frequency Response 7

	SSR2 Mode	SSR2 Mode Estimation	SSR1 Mode	SSR1 Mode Estimation
1st	40.82Hz	Simply Bending (Pitching)	46.73Hz	Simply Bending (Rolling)
2nd	218.21Hz	Free Cover Fluctuation	240.77Hz	Free Cover Fluctuation
3rd	-	-	265.54Hz	Helium Inlet Bending
4th	345.45Hz	Free Cover Torsion (Warpage)	349.38Hz	Free Cover Torsion (Fluctuate)
5th	419.18Hz	Helium Inlet Bending	-	-
6th	583.97Hz	Helium Outlet Bending	579.55Hz	Helium Outlet Bending
7th	-	-	710.06Hz	Complex

Half Shell Deep Drawing (SSR1)

RRR300 Nb 1st Press

Salt Water Test (OTIC) (SSR1)

Salt Water Test (OTIC) (SSR1)

Condition : 10% salt water dipping, drying@class 100 → rust appeared, removed!

Institute for Basic Science

Salt Water Test (UMK) (SSR1)

Beam Port (SSR1)

Stiffener Ring (SSR1)

Half Shell EBW Specimen Test (SSR1)

Half Shell EBW Specimen Test (SSR1)

- * EBW Specimen Test
 - Initial Conditions : Beam current(BC) 35/37/40mA
- 1st Test : 35mA (Penetration depth(PD) 50%/Bead width(BW) 6mm), 37mA (PD 60%/BW 6.5mm), 40mA (PD 70%/BW 8mm), all test are not satisfied for full penetration.
- 2nd Conditions : BC 43m/47mA
- 2nd Test : 43mA (PD 95%/BW 8.3mm), 47mA (PD 107%/BW
- 9.2mm), 47mA back bead shape is not uniform.
- Fixed BC 43mA as final EBW BC condition

Half Shell + Beam Port EBW (SSR1)

#1 : HS#OTIC16, BP#3, BC 42.1mA

#2 : HS#OTIC17, BP#2, BC 42.1mA

Buffing/Polishing/Cleaning (SSR1)

#3 : HS#OTIC18, BP#5, BC 42.1mA

Institute for Basic Science

Half Shell + Stiffener Ring EBW (SSR1)

[Half Shell Assembly + Stiffening ring 단선 용접]: EBW 1호기

[용접 조건 _ QWR Beam Port Cup Rib 조건 참고] → <u>가접</u> 15mA(Stiffening ring 고정) 1. Focus : -60mA 2. Distance : 438mm 3. Current :17.7mA 4. Beam Size : Ø1.5mm 5. 진공도 : 7.5E-5 torr

<After EBW of Stiffener Ring>

Trimming before Clamp-up Test (SSR1)

#16/17 Half Shell : Spokes & RF ports Machining for RF Stack-up test

- Lesson & Learn : Machining RF ports after Shell-to-shell EBW due to unexpected misalignment (can make additional alignment during RF stack-up test, EBW and machined-finishing)

#1 RF Stack-up Test

- Measured Frequency : 326.92MHz (@Beam Port)
- Trimming : 5mm @ each side

#2 RF Stack-up Test

- Measured Frequency : 326.18MHz
- Trimming : 3mm @ each side
- Frequency Change Estimation
 - .. 5mm Trimmed : -740kHz (-74kHz/mm)
 - .. 3mm Trimmed : -444kHz (estimated)

#3 RF Stack-up Test

- Frequency : 325.99MHz
- Freq. Change : -190kHz (estimated -444kHz)
- Ratio : 31.67kHz/mm (5mm trimmed : 74kHz/mm)

Final Trimming Length Decision (SSR1)

- Dimension Check

.. #16

- * Flange to Beam Cup : 107.95mm (+0.95)
- * Stiffener to Shell Edge : 202.17mm (+2.17)
- * Beam Cup to Shell Edge : 96.69mm (+1.69)
- * Flange to Shell Edge : 204.64mm (+4.64)

.. #17

- * Flange to Beam Cup : 107.07mm (+0.07)
- * Stiffener to Shell Edge : 190.4mm (+2.04)
- * Beam Cup to Shell Edge : 96.34mm (+1.34)
- * Flange to Shell Edge : 203.41mm (+3.41)

.. Final trimming : #16 1.69mm, #17 1.34mm

#4 (Final) RF Stack-up Test

- Frequency : 325.284MHz (233kHz/mm) → Fixed for considering EBW shrinkage
- Shell-to-shell EBW preparation : BCP/Rinsing/Drying, EBW Setting, etc.

Shell-to-Shell EBW Test (SSR1)

2nd test for S-T-S EBW

- Conditions : BC 25.7~24.5mA
- Over-melted @ 2 points → Reduce beam current!

Shell-to-Shell EBW (SSR1)

S-T-S EBW : OK - Hole around tacking → Removing Area!

Spoke-to-Collar EBW (SSR1)

Institute for Basic Science

S-T-C EBW : OK

- Trimming, Measurement
- Upper EBW, Lower EBW
- BCs are varied corresponding to the curvature.
- Issues : tailstock is loosen during upper EBW → Fixed!
- Fully penetration is OK! → Buffing & Surface Finishing

Shell-to-RF ports EBW (SSR1)

Shell-to-RF Port EBW - EBW Specimen, RF Ports thermal shock test, Fixture Setup

Shell-to-RF ports EBW (SSR1)

Shell-to-RF Port EBW - Left-side port EBW, Right-side port EBW

Shell Adjustment (SSR1)

Fixture Design & Making - Not adjusted!, modified fixture

Shell Adjustment (SSR1)

Modified Fixture Adjustment

- 1mm Gap : fixed! \rightarrow RF Stack-up test \rightarrow 326.25MHz frequency (Increased!)
- Beam Cup-to-cup measurement : 191.2mm (+1mm)
- Calculation : 460kHz/mm (BC sensitivity) + 200kHz (Collar difference) +@
- Possibility of detuning after Final EBW/BCP/HPR/HTB/LightBCP/HPR!
- Go to the Final EBW

nstitute for Basic Science

Shell-to-Spoke EBW Test (SSR1)

Shell-to-Spoke EBW

- Specimen Test : EBW Condition : $32.7 \rightarrow 33.7 \rightarrow 33.2 \rightarrow 33.7 \rightarrow 32.7 \text{mA}$
- Spoke Tacking : Point/Short-line EBW for posture fixing

Shell-to-Spoke EBW (SSR1)

Shell-to-Spoke EBW (SSR1)

Frequency Check (SSR1)

	#1 공정	Frequency	비고
1	[Clamp Up TEST] 211mm/199mm	326.9206 MHz	3차원 측정 후, 상하 비대칭 발견
2	[Clamp Up TEST] -5mm/-5mm	326.1667 MHz	Half Shell + Half Shell 용접 단 가공
3	[Clamp Up TEST] -3mm/-3mm	325.8230 MHz	
4	[Clamp Up TEST] -1.17mm/-0.82mm 200mm/188mm	325.2841 MHz	내부 형상 맞춤 / 용접 수축율 0.8mm Beam Port Cup to Beam Port Cup 190mm (95mm)
5		326.3680 MHz	Half Shell + Half Shell 용접 후 SPOKE HOLE 가공
6	Final Welding	326.5146 MHz	

- Frequency Change : 325.2841MHz \rightarrow 326.5146MHz (+1.2305MHz increase!)

Institute for Basic Science

- Root Cause : BC Gap increase (460kHz) + Collar Change (200kHz) + MC/EBW Distortion (570kHz)

RF Port EBW Repair (SSR1)

- RF Port Leak : Re-EBW \rightarrow Leak is not disappeared... \rightarrow What's next?

High Temperature Baking (SSR1)

b S Institute for Basic Science

Cleanroom Assembly (SSR1)

Cold Test Preparation (Munji) (SSR1)

165 기초과학연구 · Institute for Basic Science

References

- 1. RISP SSR1 Cavity Design Report (TRIUMF SRF Group and PAVAC, 2016)
- 2. Cold Tests of RISP SSR1 Prototype Cavity No.2 (Doc.#153789, 2019)
- 3. MP Simulation Results of TRIUMF SSR1 Collar Round (HC Jung, 2018)
- 4. RISP SSR2 Pre-Fabrication Design Report (RISP AST, 2018)
- 5. Technical Advisory Committee Final Report (IBS, Daejeon, 2018)
- 6. Balloon-Variant of Single Spoke Resonator (Z.Yao et al, SRF2015, THPB021)
- 7. Mechanical Design of Single Spoke Resonator Type-2 SC Cavity for RISP (MO Hyun et al, HIAT2018, WEOYA01)
- 8. Fabrication Process of Single Spoke Resonator Type-2 (SSR2) for RISP (MO Hyun et al, SRF2021, MOPCAV011)
- 9. Modal Analysis and Vibration Test of Single Spoke Resonator Type-1 (SSR1) for RAON (MO Hyun et al, SRF2021, THPCAV001)
- 10. Mode Analysis of Single Spoke Resonator Type-2 (SSR2) for RISP (MO Hyun et al, HIAT2022, FR1C3)

