Multipactor suppression with DC offset in coaxial RF FPC for SSR cavities

1/March/2023

Heejin Do

- RF Fundamental Power Coupler (RF FPC)
- Role: RF FPC is to supply RF power into cavity operating under ultra-low pressure, lower than 1E-9 mbar.
- Characteristics
 - Capacitive coupler (100 ohm coaxial)
 - One warm ceramic window
 - 2 K operation (from room temperature)
 - Two thermal intercepts (4 K, 40 K)
 - Fixed coupling: extremely over coupled (coupler beta > 1000) without beam loading almost matched with beam loading (~1 mA)
 - DC bias: reduction and elimination of multipactor (MP) activation

Input parameter (for SSR1)

Parameter	value
Operation frequency	325 MHz
Operation RF power	5 kW max.(margin: 25%)
Control bandwidth	± 30 Hz
External Q factor	5E6
Standard coaxial W/G	3-1/8 inch

- Three sections: Antenna, RF window, T/L
 - Antenna
 - · Cold vacuum part, 100 ohm
 - · Two thermal intercepts (4 K, 40 K), bellows
 - \cdot Outer: 316L, inner: copper
 - RF window: 6 mm thickness Al2O3, without TiN
 - T/L: Warm air side, 50 ohm

Side view of RF FPC

RF power experiment on test bench: setup

• TW mode

SW mode

Diagnostic for interlock

Institute for Basic Science

RF reflection of the test bench (TW mode)

Variation of max. temperature & vacuum

pressure (SW mode)

Signals of electron pickup probe

Temperature variations (SW mode)

Issue

Long term operation (TW mode)

- More than 7 kW continuously in TW mode
- After one hour, a vacuum leakage occurred due to a crack in the RF window
- The temperatures were not saturated
- The temperature of RF window of the 1st coupler was increased to 375 K
 -> w/o TiN coating (310 K, saturated with no vacuum leakage)

Numerical calculation & computing simulation for MP(w/o DC offset)

Modeling for MP simulation

SEY curve

Simulation results of MP factor without DC offset (SW mode)

Computing simulation for MP: Results (w/ DC offset)

Accelerator complex for ON-line experiments

DC bias with DC block

- long term operation(durability test): DC P/S, commercial components

Diagnostic for interlock

- vacuum gauge: limit -> 1E-7 mbar?
- electron pickup probe: position
- temperature sensor: limit T, Δ T/s
- Nominal power for SSR2: external Q
 - cost for RF power system
 - RF control bandwidth

Computing simulation results of electron distribution (SW mode)

3 kV

-3 kV

Dynamic heat load and temperature distribution - 6 kW full reflection

Thermal simulation setup

Conductive heat transfer through cryomodule wall and supporter is not considered.

실제 온도를 측정하여 simulation setup을 보정하는 과정이 필요함

