Vertical test results for RAON SSR cavities

IBS & Fermilab Workshop Fermilab

(March 2, 2023; 9:30-10:00)

Heetae Kim

Rare Isotope Science Project, Institute for Basic Science, Daejeon 34000, Republic of Korea

Contents

- Superconducting cavity
- 😂 Vertical test system
- Q slope measurements for QWR and HWR
- Vertical test for passed SSR1 cavities
- Vertical test for on going SSR1 cavities
- Vertical test for on going SSR2 cavities
- 😂 Summary

Overview for RAON vertical test facility

Vertical test facility includes hanging booth, pits, solid state power amplifier (SSPA), control racks, and control room.

CAOP -

Vertical test facility

Top view of hanging booth, top flange inserted into the pit, control racks, and control room are shown in the picture.

Vertical test facility

Top flanges are shown outside and inside of the hanging booth.
 Superconducting cavities are installed to the top flange.

Superconducting cavity

Quality factor of a superconducting cavity is expressed as

$$Q_o = \frac{\text{Stored Energy}}{\text{Energy Lost Per Cycle}} = \frac{2\pi U}{P_{dis}T} = \frac{\omega U}{P_{dis}} = \frac{f}{\Delta f} = \frac{G}{R_{\text{Sur}}}$$

Generalized surface resistance is

$$R_{\rm Sur} = R_{\rm Res} + R_{\rm BCS} + R_{Flux} + R_{FE}$$

BCS resistance coming from AC current is

$$R_{\rm BCS} = \frac{C_1 f^2}{T} \exp(-\frac{\Delta}{k_B T})$$

Surface resistance at zero temperature becomes

$$R_{\rm Sur} = R_{\rm Res} + R_{Flux}$$

Vertical test system

C-2AC

Rare Isotone

- Self Excited Loop (SEL) mode is used.
- STwo SSPAs are 200 and 500 W.
- **BRF conditioning is performed after cable calibration.**

Quality factor and accelerating field

Solution From decay time measurement, we can get

$$Q_L = \frac{w\tau_{3dB}}{\ln 2}$$

Acceleration field is

$$E_{acc} = \sqrt{Q_t P_{tran} \left[\frac{(R/Q)}{L_{eff}^2}\right]}$$

Quality factor is

$$Q_o = \frac{Q_t P_{tran}}{P_{dis}} = \frac{Q_t P_{tran}}{P_{fwd} - P_{ref} - P_{tran}}$$

CAC

Procedures of vertical test

- Visual inspection for cavity
- Frequency measurement with VNA
- Assemble cavities to top flange in hanging booth
- Check variable couplers
- Low temperature baking
- Insert the top flange into a pit
- RF calibration at room temperature; check RF connections
- Supply liquid nitrogen and helium
- Cool down; fast cool down from 150 K down to 50 K
- RF calibration @4.2 K
- 😊 RF conditioning
- Q slope measurement @4.2 K, which includes LFD measurement
- Pressure sensitivity measurement
- 2K pumping
- Q slope measurement @ 2K, which includes LFD measurement

RF conditioning

C RF conditioning is a process to clean the RF surface of the superconducting cavity in order to make the highest quality factor in the range of all possible accelerating field.

- RF conditioning starts at over coupled in which variable coupler is inserted the most into the inside of the cavity, 0 pulse.
- By watching the transmitted power(Pt), we change the forward power(Pfwd) and the phase of LLRF SEL mode to increase the Pt.
- The forward power and transmitted power are increased together after finishing RF conditioning.

Q slope measurement for QWR

○ Q slope measurement as a function of accelerating electric field for the quarter-wave resonator (QWR) cavities at 4.2 K. This data shows the failed and passed QWR. The total number of the QWRs is 22 and all of them are passed.

○ Q slope measurement as a function of accelerating electric field for the half-wave resonator (HWR) cavities at 2 K. This data shows the failed and passed HWR. The total number of the HWRs is 106 and all of them are passed.

Q slope measurement for SSR1

LFD measurement for SSR1

~~RAON

Pressure sensitivity measurement for SSR1

RAON

Pressure sensitivity is measured in the pressure range of 35 and 170 mbar.

Q slopes for SSR1 (passed)

Rare Isotone

- SSR1 VZ#2 and 3 are passed.
- Quality factor decreases as the radiation is increased.

Q slopes for SSR1 (on going)

SSR1 VZ#1 and 4 are not passed.

Quality factor decreases as the accelerating field is increased.

Q slopes for SSR2 (on going)

 \bigcirc

- Field emission conditioning shows some effect.
 Quality factor decreases as the acceleration field is included.
- Quality factor decreases as the accelerating field is increased.

Pressure sensitivity and LFD for SSR1

RAON

ssr1 cavity	df/dp (Hz/mbar)	LFD[Hz/(MV/m) ²]
ssr1 VZ#3 bare	-659	-38.9
ssr1 VZ#1 jacket	-27.9	-12.3
ssr1 VZ#2 jacket	-523.9	-7.2

- The pressure sensitivity (df/dp) and Lorentz force detuning (LFD) for SSR1 are measured.
- Compared to bare cavity, the pressure sensitivity (df/dp) and Lorentz force detuning (LFD) for the jacked cavity are decreased.
- Pressure sensitivity measurement for Jacket depends on how the cavity is secured in vertical test. It can be free boundary or fixed boundary.

The pressure sensitivity (df/dp) and Lorentz force detuning (LFD) for SSR2 are measured.

Summary

- Vertical test facilities are shown.
- S slope measurements for QWR and HWR are shown.
- Q slope is measured for passed SSR1 cavities.
- Q slope is measured for on going SSR1 cavities.
- Q slope is measured for on going SSR2 cavities.
- Pressure sensitivity and LFD are measured for SSR1 and SSR2.

Thank you for your attention

